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Abstract 

 

This research is focused on determining the feasibility of using single crystal 

uranium dioxide, UO2, as the detection medium of a solid state neutron detector.  The Air 

Force Research Laboratory has had recent success in synthesizing single crystal UO2 

using a hydrothermal growth process.  The stoichiometry and single-crystal nature of the 

hydrothermally synthesized material was determined by x-ray diffraction (XRD) and x-

ray photoelectron spectroscopy (XPS).  XRD resolved the unit cell to 3 orthogonal and 

identical lattice parameters of length 5.4703 ± 0.0006 Å consistent with the fluorite 

structure of UO2.003 and of sufficient quality for semiconductor applications.  The satellite 

structure and binding energies, specifically in the region of the U 4f features, were also 

found to be consistent with nearly stoichiometric UO2.   

The stability of the crystal surface was studied with XPS.  Using depth-resolved 

techniques, the binding energy shift of the U 4f photopeaks indicated that the sputtered 

surface stoichiometry was near that of the sub-surface, shifting only by 0.15 ± 0.05 eV 

between the maximum depth (~50 Å) and the surface with the trend toward higher 

surface oxide states.  The first ever photoelectric work functions of the (111) and (100) 

surfaces of hydrothermally grown UO2 were measured at 6.28 ± 0.36 eV (111) and 5.80 ± 

0.36 eV (100).  The temporal evolution of the work function measurements deviated less 

than 6.4% on the (111) surface and 2.1% on the (100) surface between the initial and 

maximum values over a 24-hour period indicating an electronically stable surface under 

high vacuum conditions. 
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The effective Debye temperature of hydrothermally synthesized UO2 was 

measured and a lattice stiffening transition was found at 476 ± 91 K on a clean and 

annealed surface.  The effective Debye temperature below the transition was 500 ± 59 K 

and 165 ± 21 K above it.  This surface transition is likely that of a mixed phase of (UO2+x 

+ U4O9-y) below the transition to a single (UO2+x) phase above the transition.  This implies 

the single (UO2+x) phase is less rigid which has important implications for crystal doping 

and purification. 

Analysis of the current-voltage response of a Ag-UO2-GaIn device suggests that 

the crystal bulk is n-type, an important discovery toward fabrication of engineered 

junctions. A rudimentary resistive detector was fabricated using mechanically contacted 

UO2.  Despite multiple efforts to parse the measured response, the device did not 

conclusively demonstrate the ability to detect or discriminate between α and γ radiation.  

The potential for neutron radiation detection using hydrothermally synthesized UO2 

remains to be answered. 
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EVALUATION OF HYDROTHERMALLY SYNTHESIZED URANIUM OXIDE 
FOR NOVEL SEMICONDUCTOR APPLICATIONS 

 
 
 

I.  Introduction 

1.1 Motivation 

Tracking and identification of radiation sources in the age of nuclear proliferation 

and well-resourced non-state actors is a top national priority.  The successful detection 

and interdiction of nuclear material traveling among the substantial volume of imported 

goods to the US remains the primary task of the Domestic Nuclear Detection Office 

(DNDO).  To this end, great emphasis has been placed on developing better detection 

systems for the use in homeland security radiation detectors.  In the age of high-tech, 

miniaturized devices, the end-user expects a radiation detector to be compact, portable, 

consume little power, and provide rich detail from the measured spectrum.  However, 

successful radiation detection favors large detector volumes and long count intervals.  

Within this trade-space, the employment of more efficient detector materials, especially 

neutron sensitive materials, supports the end-user’s expectations.  One approach to 

counter-proliferation on a broad scale is the wide-spread placement of many small 

detectors, which can be combined with data mining to provide details about movements 

of radiation sources.  To achieve this, detectors must be small, simple, low power 

consumers, and efficient at detection of the radiation of interest while minimizing the 

effect of natural and man-made background. With the exception of detection efficiency, 

all of these are hallmarks of the solid-state motif. 
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1.2 Special Nuclear Material Detection 

The detection of special nuclear material, SNM, most directly relates to the 

identification of nuclear weapon materials by remote means.  Defined by Title I of the 

Atomic Energy Act of 1954, SNM includes Pu, U-233, and U enriched in the isotopes 

U-233 or U-235 [1].  Such materials are long-lived and decay by α-emission.  By 

definition, they are fissionable and undergo spontaneous fission, emitting neutrons in the 

process.  SNM also emits gamma-rays by virtue of decay de-excitation, but a neutron 

signature is unambiguous, harder to mask, and almost always associated with SNM.  In 

addition, terrestrial gamma-ray background sources represent a potential detection 

complication.  Table 1 summarizes the spontaneous neutron emission rates of select 

nuclides.  Because the nuclides of Pu are difficult to separate, any fraction of Pu-240 in a 

Pu mass will enhance neutron emission. 

Table 1. The primary decay modes, half-lives, and spontaneous neutron emission rate of 
selected nuclides. 

        

 

Half-Life 
[year] 

Primary 
Decay Mode 

Spontaneous Fission 
Neutron Emission 
Rate [n / 100 g s]* 

239Pu 24110 α Emission 2 
240Pu 6564 α Emission 138359 
241Pu 14.4 α Emission 23 

    235U 7.04E+08 α Emission 0.14 
238U 4.50E+09 α Emission 1.5 

* Emission rate based upon an average of 2.89 neutrons per 
 Plutonium fission and 2.44 neutrons per Uranium fission [2]. 
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Neutron detectors exploit specific nuclear reactions for detection since neutrons cannot 

be detected directly in a practical system.  In such a reaction, the products must include 

energetic particles which produce charged particles capable of ionizing matter. Two of 

the most common and well-documented reactions employ BF3 or 3He gases with 

reactions depicted (1) and (2) [3]. 

 B + n 
3840 b
�⎯⎯⎯�  Li3

7 +  He2
4

0
1

5
10 +  γ + 2.31 or 2.79 MeV (1) 

 He + n 
5330 b
�⎯⎯⎯� H13 +  p110

1
2
3  + 764 keV  (2) 

 

Depicted above each reaction is the thermal neutron cross-section, or probability of 

interaction in area units.  The reaction energy, depicted as a product, is often referred to 

as the ‘Q’ value which is distributed among the reaction products.  The high cross section 

for the 3He reaction and its availability as a by-product from nuclear weapon material 

production has made it an attractive detection medium for portal neutrons for decades. 

Unfortunately, due to recent low production rates 3He detectors have become costly and a 

national effort to find a suitable replacement is underway [4]. 

 Semi-conducting neutron detectors using a conversion material are a potential 

alternative based upon modern manufacturing techniques and device fabrication methods.  

These detectors make use of the reaction products from neutron interactions in the 

conversion material which introduces ionization events within the depletion region of the 

device junction.  This potentially provides a signal that can be substantive compared to 

saturation currents across the junction interface, assuming efficient charge collection in a 
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small volume.  Typical reactions employed in a conversion layer material are listed in (3), 

(4), and (5). 

 Gd + n 
255000 b
�⎯⎯⎯⎯⎯�  Gd64

158 +  γ + IC e−1
0

0
1

64
157  + 7937 keV (3) 

 Cd + n 
21000 b
�⎯⎯⎯⎯�  Cd48

114 + 0
1

48
113  γ + 9042 keV   (4) 

 Li + n 
940 b
�⎯⎯�  H13 + He2

4
0
1

3
6  + 4.78 MeV (5) 

 

An efficient detector design employs a reaction with both a large neutron fission cross-

section and a large ‘Q’ value which can be efficiently collected electronically.  Materials 

containing Gd are attractive based on the cross-section, but the detectable internal-

conversion electron possesses such a small fraction of the ‘Q’ value that charge collection 

limits its efficiency.  The 6Li reaction is nearly the reverse; the cross-section is lower but 

the ‘Q’ value of 4.78 MeV is distributed among large particles which produce significant 

ionization.   By comparison, for uranium, and especially in the case of 235U, the fission 

interaction is shown in (6).  Not only is the cross-section relatively high, but the ‘Q’ value 

is over 30 times larger than for 6Li. 

 U92
235 +  n01 

 →  ( U∗ 92
236 )

580 b
�⎯⎯� 2 Fiss. Frag. + (2 or 3) n01  + γ  

                 + 180 MeV 
(6) 

 

The ‘Q’ value energy manifests primarily in the form of fission fragment kinetic energy 

shown in Table 2 [2].  This is valuable, given that the fission fragments are highly 

charged and have a short track length.  Therefore, fission interactions occurring inside the 

active detector volume within a crystal made with uranium have a high probability of 

producing secondary ionization which is the electronic signal indicating detection. 
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Table 2. Prompt energy distribution of 235U fission 

Fission Fragment Energy 168 

Neutron Energy 5 

Prompt Gamma-ray Energy 7 

Total Prompt Energy 180 MeV 

 

 The theory thus far has ignored the vast engineering challenge of developing 

electronically viable uranium materials and efficiently converting the ionization energy 

into a detected signal.  The fabrication of a high-quality uranium-based diode is one path 

to efficient charge collection.  An efficient diode will have a large depletion region, 

sufficient conductivity for charge collection, and an efficient mechanism to produce 

charge carriers within the depletion region; the latter being an intrinsic property of 

uranium for reasons stated previously.  Due to the difficulty in making suitable diodes 

that incorporate uranium, the engineering approach has been to create a diode of 

electronically suitable material upon which is placed a neutron reactive conversion layer 

as previously stated [5].  This approach has inherent efficiency losses.  If a diode has a 

suitable electronic structure, conduction parameters, and is made from a solid-state 

material containing uranium, such a diode would be an intrinsic detector. 

Until recently, a lack of suitable UO2 has limited its semiconductor potential [6] 

[7] [8].  Previous semiconductor-focused research utilized poor quality UO2 crystal 

material grown by melt processes which are known to produce defected crystals [7]. 
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1.3 Research Objective and Overview 

The primary objective of this research was to characterize single crystal samples 

of UO2 developed via hydrothermal growth, and to assess their potential for development 

of radiation detection devices.  In pursuit of this ultimate goal, the systematic study of 

hydrothermally grown UO2 crystals was undertaken to specifically address the following 

questions. 

(1) Does the hydrothermal growth process produce single-crystal UO2 with sufficient 

quality, purity, and stoichiometry, to be considered for electronic material?  

(2) What are the electronic characteristics of the crystal and crystal surface?  

(3) Do the crystals have the potential for a radiation detection device? 

Several crystals were synthesized in an iterative process in which the growth conditions 

were refined by elemental analysis feedback.  The use of x-ray fluorescence (XRF) and 

single-crystal x-ray diffraction (SCXRD) provided purity and structure data to confirm 

the formation of nearly stoichiometric UO2.  An XRD rocking curve confirmed long-

range crystal order.  The crystal surface was characterized by photoemission 

spectroscopy (PES) utilizing both temperature and depth-resolved techniques to confirm 

the surface was nearly stoichiometric UO2.  Two effective surface Debye temperatures 

were identified, separated by a lattice stiffening transition at a phase transition which has 

implications for crystal purification, crystal doping, and dopant migration.  The 

photoelectric work function of two crystal faces, (111) and (100), was measured and used 

to determine the electronic stability of the surfaces.  The measurements were used to 

identify potential metals for application of Ohmic and Schottky contacts.  The I(V) 

characteristics of both a mechanical W-UO2 junction and surface-applied Ag-UO2-GaIn 
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junction device were measured in confirmation of the theory.  In addition, I(V) and C(V) 

measurements of the Ag-UO2-GaIn junction inferred that the material was n-type with a 

p-type junction, an unexpected result, which is analyzed further in the document.  A 

resistive device fabricated using mechanical W-UO2 contacts was evaluated as a radiation 

detector with mixed results. 
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II.  Theory 

This section introduces relevant theory applicable to the measurement techniques 

employed in this research as well as the nature of uranium oxide.   During the iterative 

development of the growth process, x-ray fluorescence and x-ray diffraction 

measurements provided information as to the composition and structure of the crystals 

and are presented first.  Photoemission spectroscopy, in its various forms, provided 

electronic structure, elemental composition, and insight into the chemical environment of 

the elements of the crystal.  Basic semiconductor theory is presented along with the 

physics of hydrothermal crystal growth.   The theory of defect formation in uranium 

oxide, specifically the formation of oxygen defects which are largely responsible for the 

electronic and physical properties of the material, is also presented. 

2.1 X-ray Fluorescence Spectroscopy 

X-ray fluorescence spectroscopy (XRF) leverages the unique electronic energy 

distribution of each element to provide elemental composition information.  An XRF 

system uses a primary x-ray source to excite or ionize the atoms within a sample.  The 

excited atomic states relax and emit characteristic, fluorescent x-rays in accordance with 

spectroscopic selection rules. 

Figure 1 depicts the electronic states of a typical high-Z atom.  The states are 

characterized by combinations of the principle quantum number, n, the angular 

momentum quantum number ℓ, and the spin-orbit coupling, j.  Each energy group is 

identified by a shell designation which can be enumerated further for convenience.  The 

shells are designated as K, L, M, N, and O which correspond to the principle quantum 
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numbers 1, 2, 3, 4, and 5.  The source x-rays, usually generated with an uncommon metal 

anode such as rhodium, excite the target material electrons into unoccupied states 

provided the energy of the primary x-ray exceeds the binding energy of the initial state 

[9].  The vacancies are filled by electrons from lesser-bound states in general accordance 

with (7)-(9), the selection rules, which govern the change of principle quantum 

number, Δn, angular momentum quantum number, Δl, and the total momentum quantum 

number, Δj, for the transitions [9].  

 Δn = ≥ 1  (7) 

 Δj =  0, ±1 (8) 

 Δℓ = 0, ± 1 (9) 

 

The energy difference between the initial and final state is emitted as a secondary x-ray 

photon which gives rise to the term fluorescence.  The secondary x-rays and their relative 

intensities are well-documented and the spectrum can provide both the identity and 

relative abundance of each element in the sample with a detection threshold under 

optimal conditions of 1 ppm [9] [10].  XRF measurements are nearly independent of 

elemental bonding environment and therefore provide an elemental analysis of the crystal 

samples investigated in this research.   
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Figure 1.The first 4 shells of electronic states describing a typical high-Z atom.  The 
primary x-rays, identified as hv, excite the core electrons into lesser-bound state 
vacancies.  The resulting vacancies are filled in accordance with the selection rules 
resulting in the emission of secondary x-rays, a.k.a fluorescent or characteristic x-rays, 
with well-characterized energies.  The spectroscopic notation for the energy levels and a 
representative sampling of allowed x-ray emissions are displayed on the right.  Each 
element can be identified by its characteristic x-rays. 

2.2 X-ray Diffraction 

A crystal is a matrix of regularly spaced atomic planes.  Interrogation of the 

matrix by parallel x-ray beams as depicted in Figure 2 will yield a constructively 

scattered interference pattern in accordance with Bragg’s law of diffraction given by (10) 

in which n is an integer and λ is the x-ray wavelength. 



www.manaraa.com

11 

 

Figure 2.  Incident x-rays are scattered by the planes of a crystal lattice.  When the path 
length difference of parallel beams is an integer multiple of the wavelength, constructive 
interference occurs.  The identification of the angle, ϴ, at which this occurs provides the 
interplanar spacing of the lattice. 

 

The interplanar spacing, d, is related to the angle of x-ray incidence by (11). 

 Path Length Difference =  n λ  (10) 

 

For a fixed x-ray energy, the crystal can be interrogated through a spectrum of angles 

which will yield the interplanar spacing.  This is related to the Miller indices of the 

(cubic) crystal by (12) [9]. 

 2 d sin𝜃𝜃 =  n λ (11) 

 

When this is generalized to three dimensions, i.e. single-crystal x-ray diffraction, it can 

provide the lattice constants.      

 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 =  
𝑉𝑉

√ℎ2 + 𝑘𝑘2 + 𝑙𝑙2
 (12) 

 

As an example, consider a UO2 (111) Bragg peak angle of 14.1° measured using a Cu kα1 

radiation source with a wavelength of 1.5406 Å.  The resulting interplanar distance, d, 



www.manaraa.com

12 

computed from (11) , is 3.13 Å.  The lattice parameter is then computed by (12) to be 

5.42 Å with the assignment of the Miller indices (h,k,l) to (111).   

2.3 Photoemission Spectroscopy 

Photoemission spectroscopy measures the kinetic energy of photoelectrons 

generated in a sample from an excitation source, usually an x-ray or UV photon.  The 

measured photoelectron energy spectrum contains information about the chemical 

environment of the emitting atoms.  This powerful tool can determine both the identity 

and chemical state or states of the constituent atomic species within the sample. 

2.3.1 Photoemission Model 

A 3-step model describes the basic process of photoelectron generation and 

energy measurement [11].  In the first step, photons of known energy are directed into a 

sample which generates photoelectrons via the photoelectric effect.  In step 2, the 

photoelectrons move through the sample to the surface.  In step 3, photoelectrons with 

sufficient energy escape the surface into the vacuum and are collected by an electron 

analyzer.  The kinetic energy of the electron, as measured by the analyzer, is directly 

related to the energy of the bound state. 

 

2.3.2 PES Energy Scheme 

X-ray photoemission and ultraviolet photoemission, commonly abbreviated XPS 

and UPS, differ only in the energy of the excitation photon and photoelectric cross-

sections.  The energy level scheme of each process is similar and depicted in Figure 3 

which assumes the sample is grounded to the instrument so that the Fermi levels are 
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aligned.  The photoelectron is generated by a finite photon energy, hv, which is the 

maximum kinetic energy, KE, of a detected photoelectron.  To first-order, the kinetic 

energy of the electron is the difference between the photon energy and the binding energy 

of the electronic state.  However, as the photoelectron approaches the sample surface, it 

must overcome a surface potential as it transits to the vacuum. 

 

 This surface potential is known as the sample work function, ϕsample, which is 

strongly influenced by surface morphology and crystal orientation.  An additional amount 

of energy is lost to the spectrometer and its surroundings.  This is called the system work 

function, ϕsystem.  Following the energy balance of Figure 3, the measured KE is described 

by (13). 

 𝐾𝐾𝐾𝐾 = ℎ𝜀𝜀 − 𝐵𝐵𝐾𝐾 −  𝜙𝜙𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑘𝑘𝑚𝑚 −  �𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚 −  𝜙𝜙𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑘𝑘𝑚𝑚� (13) 

 

The ϕsample cancels and the BE is described by (14). 

Figure 3.  The energy scheme of photoelectron spectroscopy.  XPS and UPS differ 
primarily in the energy of the photon source. 
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 𝐵𝐵𝐾𝐾 = ℎ𝜀𝜀 − 𝐾𝐾𝐾𝐾 −  𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚  (14) 

 

The Al or Mg Kα lines of 1486.6 and 1253.6 eV respectively are the most 

common x-ray sources for XPS [11].  A He gas discharge lamp is a common UPS source 

which has a He1α line of 21.2 eV.  The aluminum Kα energy has a line width, or full 

width at half maximum (FWHM), of 0.85 eV from the unresolved contributions of the 

Kα1 and Kα2 lines which differ in centroid energies by 0.43 eV [12].  The convolved Kα 

centroid energy is 1486.60 eV which is shown in Figure 4. 

 

Figure 4. The aluminum Kα line shown with contributions from both the Kα1 and Kα2. 

 

2.3.3 Photoelectron Attenuation Depth & Depth-Resolved PES 

The penetration depth of the excitation photon is computed by (15).  It relates the 

photon intensity, I, to the initial photon intensity, Io, which decays along a distance, d, 

according to the mass attenuation coefficient, 𝜇𝜇
𝜌𝜌
, and the sample density, ρ.  It is common 

to define attenuation as 1/e, ≈ 0.3679, the condition at which 63% of the x-ray photons 

are absorbed. 
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 𝐼𝐼 =  𝐼𝐼0 𝑒𝑒− 𝜇𝜇𝜌𝜌 𝜌𝜌 𝑑𝑑 (15) 

 

Using a single attenuation coefficient, μ/ρ, to approximate the interaction of the x-ray 

photon in the crystal with a density, ρ, of 11 g/cm3, a 1480 eV photon is attenuated in 492 

unit cell lengths of 5.47 Å, a 21 eV photon is attenuated in 150 unit cells.  The x-ray 

attenuation distances are over 10 times that of the photoelectrons and do not represent the 

information depth of PES.  The photoelectron attenuation distance is described by (16) 

where d is now the photoelectron travel distance and λi is the inelastic mean free path, or 

IMFP, of the photoelectron. 

 𝐼𝐼 =  𝐼𝐼0 𝑒𝑒− 𝑑𝑑/𝜆𝜆𝑖𝑖 (16) 

 

The previous definition of 63% attenuation yields d = λi.  An alternate definition 

of 95% attenuation yields d = 3 λi.  The IMFP can be obtained by the empirical relation 

of Tanuma, Powell, and Penn known as TPP2M which is an empirical fit given by (17) 

through (23) [11] [13].  Using this relationship, the IMFP is a function of the electron 

energy in eV, E, the free electron plasmon energy, Ep, the material density (in g/cc), ρ, 

the number of valence electrons per molecule, Nv, the band gap energy, Eg, (in eV) and 

the molecular weight, M. 

 

 𝜆𝜆𝑖𝑖 =  𝐾𝐾
�𝐾𝐾𝑚𝑚2 �𝛽𝛽 ln(𝛾𝛾𝐾𝐾) − �𝐶𝐶𝐾𝐾� + (𝐷𝐷𝐾𝐾2)���   

(17) 

 
𝛽𝛽 =  −0.0216 +

0.944

�𝐾𝐾𝑚𝑚2 + 𝐾𝐾𝑔𝑔2
+ 7.39 × 10−4𝜌𝜌  (18) 
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 𝛾𝛾 = 0.191 𝜌𝜌−0.50  (19) 

 𝐶𝐶 = 1.97 − 0.91 𝑈𝑈  (20) 

 𝐷𝐷 = 53.4 − 20.8 𝑈𝑈  (21) 

 
𝑈𝑈 =

𝑁𝑁𝑣𝑣
𝑀𝑀

 =  
𝐾𝐾𝑚𝑚2

829.4
  (22) 

 
𝐾𝐾𝑚𝑚 = 28.8 �

𝑁𝑁𝑣𝑣
𝑀𝑀

 (23) 

 
Using the appropriate parameters for UO2, a photoelectron with 1480 eV of 

kinetic energy has an IMFP of about 20 Å.  If the more restrictive definition of 95% 

attenuation is used, the distance is 60 Å.  Using the greater distance, the path length 

equates to only 11 unit cells.  A 21.2 eV photoelectron is attenuated in 2.4 Å (95% 

attenuation).  This is less than ½ of a unit cell.  The TPP2M approximation is less 

accurate in the low-energy regime, but it is clear that the limiting sample depth is 

determined by photoelectron attenuation not photon penetration. 

XPS can be used to differentiate between the surface and sub-surface electronic 

states by varying the angle between the sample surface and the electron analyzer.  As 

depicted in Figure 5, placing the analyzer normal to the surface provides the maximum 

sampling depth.  A steeper angle, achieved by moving the electron analyzer or tilting the 

sample, will preferentially select surface generated photoelectrons. 



www.manaraa.com

17 

 

Figure 5. The angle between the sample and the electron analyzer can be varied to sample 
either the bulk or surface electronic states.  In each of the two cases shown, the 
attenuation distance is the same but the sample depth changes. 

 

2.3.4 Photoelectric Work Function 

Photoelectron spectroscopy is surface sensitive and is well-suited to the 

determination of a sample’s surface work function, Φ, defined as the minimum 

thermodynamic work required to liberate an electron from the Fermi level to the vacuum 

level [14].  In the context of photoemission, a measured work function is referenced to 

the least-bound electron density of states (DOS) which, for a conductor, is degenerate 

with the Fermi level [15].  In the case of a semi-conductor with a negligible DOS at the 

Fermi level, a photoemission measurement will reference the valence band maximum.  

The term ‘photoelectric work function’, Φ𝑃𝑃𝑃𝑃𝑃𝑃, is used to unambiguously describe the 

work function measured by the photoemission process. 

A photoelectron generated by an excitation photon may transport beyond the 

surface of the crystal face into the vacuum.  When the electron travels a distance beyond 

the surface of the material to the extent that the surface no longer influences the 
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electrostatic potential energy, the electron has achieved the local vacuum level which is 

defined as a near-zero potential energy state, 𝜀𝜀𝑉𝑉𝑠𝑠𝑉𝑉0 .  The local vacuum level is not an 

absolute energy state and can vary among surfaces of differing crystal orientations [14] 

[16] [17].  It is this variation that makes the work function sensitive to crystal orientation 

and surface morphology.   A true zero potential requires an infinite separation of the 

electron from the surface; i.e. the vacuum level at infinity, 𝜀𝜀𝑣𝑣𝑠𝑠𝑉𝑉∞ .  The work function, in 

terms of potential, is the difference between the electrochemical potential in the bulk 

crystal and the local vacuum level [14].  Figure 6 depicts the vacuum and Fermi energy 

levels in which the electrochemical potential of the electrons in the crystal bulk, �̅�𝜇, is 

defined by (24) where q is the elementary charge [14]. 

 
Figure 6. The relationship between the electrochemical potential of bulk electrons, �̅�𝜇, as it 
relattes to the local vacuum level, 𝜀𝜀𝑉𝑉𝑠𝑠𝑉𝑉0  ,and the theoretical vacuum level at infinity,  𝜀𝜀𝑣𝑣𝑠𝑠𝑉𝑉∞ . 
 

  µ� =  q𝜀𝜀𝑉𝑉𝑠𝑠𝑉𝑉∞ − qεf (24) 

  qΦ =  q[ (𝜀𝜀𝑉𝑉𝑠𝑠𝑉𝑉∞ − εf ) − (𝜀𝜀𝑉𝑉𝑠𝑠𝑉𝑉∞ − 𝜀𝜀𝑉𝑉𝑠𝑠𝑉𝑉0 ) ] (25) 

 

Taking 𝜀𝜀𝑣𝑣𝑠𝑠𝑉𝑉∞  as the zero energy reference, (25) defines Φ in terms of the vacuum 

levels which yields (26) upon simplification.  Restated in terms of energy levels, (27) is 
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the functional form most often found in the literature describing the work function [18] 

[14] [15]. 

  −qΦ =  qεf − q𝜀𝜀𝑉𝑉𝑠𝑠𝑉𝑉0  (26) 

  Φ =  𝜀𝜀𝑉𝑉𝑠𝑠𝑉𝑉0 − εf (27) 

 

A photoemission spectrometer cannot detect electrons with an energy below 𝜀𝜀𝑉𝑉𝑠𝑠𝑉𝑉0  

which gives rise to a photoemission spectral feature known as the secondary electron 

cutoff (SEC). 

The SEC represents the threshold energy of detection and photoelectrons of 

energy less than Φ do not escape the surface of the crystal.   From a practical stand-point, 

it is difficult for the spectrometer to detect electrons at such low energies and the signal 

intensity is increased by application of bias, V, between the sample and the spectrometer 

such that the emitted photoelectrons have an additional kinetic energy (KE) determined 

by V.  This has the effect of shifting the energy spectrum to lower binding energies (BE) 

by the magnitude of V.  Graphically, this is shown by Figure 7 which presents the SEC of 

a grounded sample as well as one shifted by V.  The biased sample also has a more 

intense signal near the SEC.   The maximum binding energy, BEmax, given by (29) is 

determined by (28) with KE = 0. 

  𝐵𝐵𝐾𝐾 = ℎ𝜀𝜀 − 𝐾𝐾𝐾𝐾 −  ф𝑃𝑃𝑚𝑚𝑚𝑚𝑉𝑉𝑠𝑠𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑆𝑆  (28) 

       𝐵𝐵𝐾𝐾𝑚𝑚𝑠𝑠𝑚𝑚  = ℎ𝜀𝜀 −  ф𝑃𝑃𝑚𝑚𝑚𝑚𝑉𝑉𝑠𝑠𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑆𝑆  (29) 
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Figure 7. A binding energy (BE) vs intensity (I) spectrum for (a) the grounded sample 
and (b) the same sample with an applied bias of V.  The fermi edge, BE = 0, is denoted 
by a0 and b0.  The energy difference between SECa and SECb (or between a0 and b0) is 
bias voltage V.  An applied bias increases the intensity of low energy photoelectrons.   

 

The difference between BEmax and the SEC is Φ𝑃𝑃𝑃𝑃𝑃𝑃  shown as (30) in which the first two 

terms on the right represent BEmax. 

  Φ𝑃𝑃𝑃𝑃𝑃𝑃 =  ℎ𝜀𝜀 −  ф𝑃𝑃𝑚𝑚𝑚𝑚𝑉𝑉𝑠𝑠𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑆𝑆 − 𝑆𝑆𝐾𝐾𝐶𝐶 − 𝑉𝑉  (30) 

 

Most metals have work functions around 2-5 eV which places the kinetic energy of the 

SEC below 10 eV for which the inelastic mean free path is on the order of a few 

angstroms.  The photoelectrons collected for work function measurements originate at or 

very near the crystal surface. 

 The work function is determined from the energy of the SEC, as depicted in 

Figure 8.  If the spectrum was an ideal step-function, a simple vertical line would 

intercept the 0 intensity mark indicating the energy of the SEC.  Deviation from such a 

step-function can be attributed to several factors to include electron emission from a 
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lower work function material into the instrument’s field-of-view, an inhomogeneous 

sample surface, excitation photon linewidth, and excitation photon intensity.  The 

intercept at zero-ordinate of the linear signal edge fitting determines the SEC energy 

which is depicted by the dashed line in Figure 8. 

 

Figure 8. A nominal PES spectrum showing the Secondary Electron Cutoff (SEC) and 
linear regression line to determine the SEC energy. 

 

 Since the SEC is a minimum energy threshold, the measured SEC must be 

corrected by the portion of the photon linewidth greater than the centroid energy.  This 

correction, Δ, is one half of the full-width-at-half-maximum (FWHM) or 0.43 eV.  This 

modification of (30) is shown as (31) which is now the complete expression for Φ𝑃𝑃𝑃𝑃𝑃𝑃. 

  Φ𝑃𝑃𝑃𝑃𝑃𝑃 =  ℎ𝜀𝜀 −  ф𝑃𝑃𝑚𝑚𝑚𝑚𝑉𝑉𝑠𝑠𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑆𝑆 − 𝑆𝑆𝐾𝐾𝐶𝐶 − 𝑉𝑉 +  𝛥𝛥 (31) 

 

The expression given by (31) suggests a straightforward propagation of error by (32); a 

combination of the uncertainties of the excitation source energy, spectrometer calibration, 

SEC fit, and supplied sample bias.  
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  𝜎𝜎𝛷𝛷𝑃𝑃𝑃𝑃𝑃𝑃 = � 𝜎𝜎ℎ𝑣𝑣2 + 𝜎𝜎 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
2 + 𝜎𝜎𝑃𝑃𝑃𝑃𝑆𝑆2 

+ 𝜎𝜎𝑉𝑉2 (32) 

 

The uncertainty of a work function measurement is most strongly influenced by the 

excitation photon linewidth.   The use of an Al kα x-ray source provides a broadening 

uncertainty of 0.36 eV.  The use of an ultra-violet source is generally preferred; the 

linewidth of the commonly used He-1 line is 0.01 eV.  

 

2.3.5 Temperature Dependent XPS & Effective Surface Debye Temperature 

The heat capacity of a solid in the high temperature regime was modeled by 

Dulong and Petit as (33) in which the heat capacity at constant volume is CV, with 

internal energy as E, the absolute temperature as T, Boltzman’s constant as kb, and the 

number of atoms in the solid as N [19].  The classic model is well-known and appropriate 

for the high-temperature regime in which it properly describes experimental data [20].  

Debye’s model, given in (34), more accurately predicts the heat capacity of a solid, 

especially in the low-temperature regime.  The Debye temperature is depicted here as Θ 

and defined by (35).  For T > Θ, (34) predicts the classical heat capacity of (33) which 

leads to a definition of Θ; the temperature at which the Debye model obeys (33) [19]. 
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A first-order description of this phenomenon assumes an isotropic lattice of 

spacing a0.  The Debye temperature describes the point at which the phonon wavelength 

exceeds a0.  Below this temperature, the thermodynamics of the material are described by 

collective lattice vibration and the phonons are of a wavelength > a0 which couple 

readily.  At temperatures above Θ, phonon wavelengths are smaller than a0 and 

independent thermal lattice vibration dominates the material behavior.  Photoelectrons 

generated in a crystal lattice can couple with the phonon modes of the vibrating nuclei 

and scatter [11].  It follows that the intensity of a photoelectron spectrum should decrease 

as the temperature of the sample is increased.  Hufner describes the number of atoms that 

contribute to a photoemission signal as (36). 

 
𝑁𝑁(𝐾𝐾,ℏ𝑤𝑤) ∝  |𝜎𝜎2|  �𝑒𝑒−∆𝑘𝑘2 𝑈𝑈02�𝛿𝛿(∆𝒌𝒌 − 𝑮𝑮) + 𝑁𝑁�1 − 𝑒𝑒−∆𝑘𝑘2 𝑈𝑈02�

𝑮𝑮

� (36) 

 

In this expression, σ is the photoabsorption cross-section, E is the electron energy, ℏw is 

the photon energy, Δk is the electron wave vector transfer, G is the reciprocal lattice 

vector, and Uo is the mean displacement of the scattering nuclei.  The first term in 

parenthesis represents the direct photoelectron current, the second term represents the 

indirect current arising from phonon-coupled transitions.  The exponential can also be 

represented in terms of the Debye-Waller factor, W, given by (37) which is used to 

describe the temperature dependence of signal intensity as a function of temperature (38) 

[21]. 
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 𝑒𝑒−∆𝑘𝑘2 𝑈𝑈02 = 𝑒𝑒−2𝑊𝑊 (37) 

 𝐼𝐼 = 𝐼𝐼0 𝑒𝑒−2𝑊𝑊     (38) 

 

 The mean displacement of the nuclei can be approximated by (39) which is 

identified by Hufner as the ‘Debye approximation’ in which MA is the mass of the 

scattering center [11] [21].  This expression suggests that the mean displacement of the 

nuclei in the lattice should increase proportionately with temperature. 

 𝑈𝑈0 =  3 ℏ2

𝑀𝑀𝐴𝐴 𝑘𝑘𝑏𝑏 𝛩𝛩2
T (39) 

 

Using a methodology presented by Hufner, substituting (39) into (36) yields (40). 

 
𝐼𝐼 ∝  |𝜎𝜎2|�𝑒𝑒

−∆𝑘𝑘2 � 3 ℏ2
𝑀𝑀𝐴𝐴 𝑘𝑘𝑏𝑏 𝛩𝛩2T�

2

�𝛿𝛿(∆𝒌𝒌 − 𝑮𝑮) + 𝑁𝑁�1 − 𝑒𝑒
−∆𝑘𝑘2 � 3 ℏ2

𝑀𝑀𝐴𝐴 𝑘𝑘𝑏𝑏 𝛩𝛩2T�
2

�
𝑮𝑮

� (40) 

 

It is assumed that the final photon momentum approximates Δk such that the magnitude 

of Δk is described by (41).   

 
𝛥𝛥𝑘𝑘2 =  �

2𝑚𝑚𝐾𝐾
ℏ2

 (41) 

 

For a given spectral photoelectron feature, the intensity at an arbitrary temperature can be 

defined as a reference, Iref.  The intensity, I, at a different temperature can then be 

compared to Iref using a ratio from (40) resulting in (42). 
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 (42) 

 

The comparison of spectral intensities, changing only the single parameter of 

temperature, simplifies (42) to (43) which can be used to identify the Debye temperature 

from experimental data [11]. 

 

𝑙𝑙𝑙𝑙
𝐼𝐼
𝐼𝐼𝑆𝑆𝑚𝑚𝑟𝑟

 =  −
3 ℏ2�2𝑚𝑚𝐾𝐾

ℏ2
𝑀𝑀𝐴𝐴 𝑘𝑘𝑏𝑏 𝛩𝛩2

 𝜕𝜕 + 𝐶𝐶 (43) 

 

When plotted as the logarithm of the relative intensity vs. temperature, the slope contains 

Θ which can be extracted by substitution of appropriate constants. 

Another approach to identifying Θ employs (38) and the definition of W for an 

isotropically vibrating system given by (44) [21].  

 
2𝑊𝑊 =  

3𝜕𝜕( ℏ𝛥𝛥𝑘𝑘)2

𝑀𝑀𝐴𝐴 𝑘𝑘𝑏𝑏 𝛩𝛩2
 (44) 

 

This definition is consistent with (37) and (39) and simplifies the approach to (43) albeit 

neglecting the explicit discussion of the phonon-assisted photocurrent of (36). 

Because XPS is a surface technique, the Debye temperature computed from XPS 

will be a surface Debye temperature.  Previously stated, the Debye temperature 

corresponds to the energy at which the phonon modes are decoupled from the collective 

lattice vibrations.  The Debye temperature may also be considered the temperature at 
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which all of the phonon modes are activated.  A rigid surface will require more energy to 

reach this point than a less coherent surface.  Therefore, a high Debye temperature 

equates to a stiffer surface which may reduce the diffusion of dopant materials and 

promote strain at non-homogenous boundaries.  Once an electronic junction has been 

formed by dopant implantation during the construction of a device, diffusion of the 

dopant will reduce device efficiency.  Conditions under which the Debye temperature 

decreases substantially are therefore operating limitations. 

 

2.3.6 Auger Emission and the Auger Parameter 

Auger electron emission complements photoemission and is modeled as a three-

electron process.   After the formation of a core-hole by photoemission, C1, the energy of 

the atom is reduced when an electron in a lower energy shell fills the hole, creating a 

second hole, C2.  The energy difference between the two electron states may be emitted 

as a photon or by emission of an electron creating a third hole, C3.  Electrons generated 

by this process are called Auger electrons.   To first order, the kinetic energy of the Auger 

electron is the difference between the binding energies of the two core electron states 

reduced by the binding energy of the Auger electron.  However, the creation of each 

core-hole may also be accompanied by atomic relaxation which reduces the energy 

carried by the emitted electron.  This is summarized by (45) which is modified from [22]. 

 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴𝑔𝑔𝑚𝑚𝑆𝑆(𝐶𝐶1,𝐶𝐶2,𝐶𝐶3) =  (𝐵𝐵𝐾𝐾𝑆𝑆1 −  𝐵𝐵𝐾𝐾𝑆𝑆2) −  𝐵𝐵𝐾𝐾𝑆𝑆3 − 𝐾𝐾𝑅𝑅𝑚𝑚𝑘𝑘𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑆𝑆𝑅𝑅(𝐶𝐶1,𝐶𝐶2)  (45) 

 

Auger emissions are named using the spectroscopic notation described in 2.1.  By way of 

example, the KLL Auger emission of atomic oxygen is graphically depicted by Figure 9.   
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Figure 9.  The generation of an Auger electron in atomic oxygen.  An x-ray creates a core 
hole, C1, in the K shell shown in (b) of a ground-state atom depicted in (a).  A second 
hole, C2, is created in an L shell, the electron filling C1 as shown in (c).  The Auger 
emission creates the third hole, C3, shown in (d).  The full nomenclature of this emission 
is O(KL2,3L2,3).  The energy difference between L2 and L3 is small and thus the levels 
are essentially the same energy.  All of the emissions involving the KLL levels are 
referred to collectively as the O(KLL). Figure after [9]. 

 

 From the binding energies of the K (525 eV) and L2,3 (7 eV) electrons, the 

estimated kinetic energy of the O(KL2,3L2,3) is 511 eV where the ‘O’ indicates oxygen 

[23].  Experimentally, this is observed around 507 eV and is strongly affected (several 

eVs) by the chemical environment of the atom [24]. 

 Two uranium oxide Auger emissions of interest are the U(N6O4,5O4,5) and 

U(N6,7O4,5V).  The N6,7 indicates the 4f states with N7 specifically identifying the 4f7/2 

electronic level.   In both emission processes, the initial core-hole is of 4f nature.  The 

O4,5 is the 5d state while the valence band is indicated by ‘V’.   In this research, these are 

referred to simply as the U NOO) and U NOV. 

The Auger parameter, αAP, a relationship relating an Auger emission to an XPS 

core-level feature of the same element, may identify or differentiate between different 

chemical environments of the investigated atom by exploiting the differences in the 

Auger energies.  Given by (46), the Auger parameter is defined as the difference in 
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kinetic energies of the Auger electron and the photoelectron emitted by creation of C1 

[22]. 

 𝛼𝛼𝐴𝐴𝑃𝑃 = 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴𝑔𝑔𝑚𝑚𝑆𝑆(𝐶𝐶1,𝐶𝐶2,𝐶𝐶3) −  𝐾𝐾𝐾𝐾𝑋𝑋𝑃𝑃𝑃𝑃(𝐶𝐶1) (46) 

 

The addition of the photon source excitation energy to the Auger parameter produces, 

α’AP, or modified Auger parameter which simplifies to (47) and uses the XPS binding 

energy in lieu of the kinetic energy.  This form is universal in that it is independent of the 

photon source energy and spectrometer calibration [22]. 

 𝛼𝛼′𝐴𝐴𝑃𝑃 = 𝐾𝐾𝐾𝐾𝐴𝐴𝐴𝐴𝑔𝑔𝑚𝑚𝑆𝑆(𝐶𝐶1,𝐶𝐶2,𝐶𝐶3) −  𝐵𝐵𝐾𝐾𝑋𝑋𝑃𝑃𝑃𝑃(𝐶𝐶1) (47) 

 

The modified Auger parameter is often simply referred to simply as the Auger parameter 

and all references will assume the modified version. 

 An advantage of the Auger parameter is the insensitivity to energy calibration.  

Measurements taken with different spectrometers may therefore be directly compared.  In 

addition, the low kinetic energy of Auger electrons provides a more surface-sensitive 

measurement than traditional XPS.  A U 4f7/2 photoelectron generated from Al kα 

radiation is attenuated by approximately 20 Å of UO2.  In contrast, the 286 eV U NOO 

Auger electron is attenuated in approximately 7 Å which is on the order of the unit cell 

dimension. 

2.4 Schottky-Mott Theory 

One of the requirements for a practical semiconductor device is the ability to 

operate in a circuit which infers the application of metal contacts.  The simplest 
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semiconductor device is a rectifier made from a metal to semiconductor contact.  The 

contact can be rectifying or non-rectifying (Ohmic or Schottky) [25].  The behavior of the 

resulting metal-semiconductor junction can be modeled with the energy band diagram of 

Figure 10 which depicts a metal and p-type semiconductor.  The energy levels depicted 

are the vacuum level, Evac, the conduction band edge, Ecp, the valence band edge, Evp, the 

Fermi level, Ef, and the band gap, Eg.  The energy bands of the isolated p-type 

semiconductor and the metal are placed together by any number of processes to create a 

junction which is shown in an idealized, abrupt transition region at the contact location 

though in reality such a junction would have a finite transition length.  The bands of the 

semiconductor bend to align the Fermi levels of both materials which creates a barrier to 

charge carriers, which in this case are holes.  The barrier height, φbp, is a function of the 

metal’s work function, φm, and the electron affinity of the semiconductor, Xs.  The 

Schottky-Mott equations describe this relationship which is often presented for an n-type 

semiconductor metal junction with a barrier height of φbn given (48) [26]. 

 𝑞𝑞𝜙𝜙𝑏𝑏𝑅𝑅 =  𝑞𝑞𝜙𝜙𝑚𝑚 − 𝑞𝑞𝑞𝑞 (48) 

 𝑞𝑞𝜙𝜙𝑏𝑏𝑚𝑚 =  𝐾𝐾𝑔𝑔 − (𝑞𝑞𝜙𝜙𝑚𝑚 − 𝑞𝑞𝑞𝑞) (49) 

 

The barrier of a p-type semiconductor metal junction is given by (49) and is related to 

(48) by (50) which prescribes that the magnitudes of the barrier heights φbn and φbp sum 

to the band gap.   

 𝑞𝑞�𝜙𝜙𝑏𝑏𝑅𝑅 +  𝜙𝜙𝑏𝑏𝑚𝑚� =  𝐾𝐾𝑔𝑔 (50) 
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The junction forms a built-in voltage, Vbi, which is the difference in the work 

functions of the materials.  The Vbi is not the same as φb.  The electronegativity of the 

semiconductor, Xs, is the energy difference between the conduction band and the vacuum 

level while the work function is the energy difference between the vacuum level and the 

Fermi level. 

 
Figure 10. The energy band diagram of a p-type semiconductor and a metal depicted 
separately on the left and joined in a junction on the right.  The Fermi-levels align and the 
energy levels bend correspondingly.  The energy levels of the vacuum, conduction band, 
valence band, and Fermi are represented by Evac, Ecp, Evp, and Ef. The band gap is 
denoted as Eg.  The work function of the semiconductor and the metal are depicted as ϕs 
and ϕm.  The barrier height is ϕbp as predicted by (49).  The electronegativity of the 
semiconductor is Xs. Figure after [25]. 

 

A minimized barrier is achieved by choosing the metal work function with respect 

to the semi-conductor electron affinity such that (48) or (49) is minimized [26].  In some 

cases, metal induced gap states at the interface of the junction can provide allowed 

energies in the band gap that reduce the predicted barrier height [26]. 

2.5 Hydrothermal Crystal Growth 

The hydrothermal growth technique employs an aqueous environment under high 

pressure and temperature conditions to dissolve and recrystallize a normally insoluble 

material.  The conditions of pressure and temperature are often in the supercritical regime 
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for water though milder growth conditions may be described as hydrothermal by the 

crystal growth community.  The critical point of water is 647 K (374 ⁰C, 705 ⁰F) and 218 

atm (22.064 MPa, 3200 psia). 

 
Figure 11. The critical point of water is 647 K (374 ⁰C, 705 ⁰F) and 218 atm (22.064 
MPa, 3200 psia). 

 

The term ‘hydrothermal’ describes the natural process of mineral formation under 

similar conditions of heat and pressure within the earth [27].  Crystals form a stable phase 

of the growth conditions and are highly ordered.  The growth technique has been used to 

produce highly pure and dislocation free quartz since the 1940’s for radio and optical 

components and wrist-watch bezels [27]. 

A typical growth reaction makes use of the temperature-dependent solubility 

difference between a nutrient dissolution zone and a crystal growth zone.  Geometrically, 

the regions are arranged vertically with the dissolution zone at the bottom of the reaction 

vessel so that gravity can hold un-dissolved solids in place. Figure 12 shows a Bridgeman 

autoclave around which is wrapped 4 heating bands to control the zone temperatures; two 

for the growth zone, and two for the dissolution zone.  A pressure gauge and safety valve 
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sit atop the autoclave.  A solubility additive known as a mineralizer can be added to the 

working fluid to enhance solubility of the growth nutrient.  Although charged as a liquid, 

under growth conditions the aqueous fluid fills the entire reaction vessel.  The 

temperature differential between the zones provides a turbulent, convective flow which 

brings dissolved nutrient to the colder growth zone where the nutrient may deposit either 

on a seed crystal (a transport growth reaction) or on the walls of the growth chamber (a 

spontaneous nucleation reaction).  Seed crystals are supported by wires in order to 

maximize the surface area in contact with the solution.  The reaction is typically housed 

in a sealed ampoule of a noble metal such as Ag to protect the autoclave from corrosive 

mineralizers.  The flow rate and flow pattern can be altered by the use of baffles.  In order 

to achieve the desired growth pressure, a specific charge volume is added to the sealed 

ampoule such that the operating temperature will provide the desired pressure 

(>3200 psia) without exceeding the limits of the equipment.  A growth reaction is 

intended to operate under steady-state thermodynamic conditions.  The initiation and 

shutdown of a reaction requires either a heating or cooling phase which can alter the 

composition of the seed crystal surface.  Transient solubility conditions can dissolve the 

seed crystal on the approach to operating temperature, re-dissolve the growth product 

during cool-down, or preferentially deposit undesirable species on the seed crystal. 

The high-pressure, high-temperature nature of the reaction within a sealed vessel 

makes it difficult to sample the growth solution and determine the intermediate species 

responsible for the crystal growth mechanism.  The growth conditions are therefore 

determined experimentally.  Although solubility data for milder conditions may inform 

the process, the solubility of the nutrient is determined experimentally. 
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Figure 12.  A Bridegeman autoclave on the left showing 4 heater bands and a pressure 
gauge.  On the right is a drawing of the sealed metal ampoule (e) inside the autoclave 
within which sits a ladder made of wire (c) supporting a seed crystal (b) which is 
surrounded by a mineralizer solution (d).  The nutrient, or feedstock (f) sits at the bottom 
of the dissolution zone which is kept hotter than the growth zone.  The difference in the 
zone temperatures determines the differential solubility (the growth rate).  A convective 
flow pattern is established which transports dissolved nutrient into the growth zone. 

 

Solubility data is deduced from the mass lost to dissolution of a crystal under the 

reaction conditions of interest.  Because the pressure and temperature conditions are 

rather extreme, a solubility experiment requires the crystal produced in a growth reaction.  

Thus, efficient growth reactions are informed by solubility data; solubility data is 

determined by dissolving the growth product.  When a crystal is dissolved into an 

aqueous solution, the change in crystal mass, ∆𝑚𝑚𝑉𝑉𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘, relative to the mass of the liquid 

phase, 𝑚𝑚𝑘𝑘𝑖𝑖𝑙𝑙𝐴𝐴𝑖𝑖𝑑𝑑 𝑚𝑚ℎ𝑠𝑠𝑠𝑠𝑚𝑚, yields the mass percentage transferred to the liquid phase. 

  𝑀𝑀𝑉𝑉𝑀𝑀𝑀𝑀 % =  
∆𝑚𝑚𝑉𝑉𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘

�∆𝑚𝑚𝑉𝑉𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 +  𝑚𝑚𝑘𝑘𝑖𝑖𝑙𝑙𝐴𝐴𝑖𝑖𝑑𝑑 𝑚𝑚ℎ𝑠𝑠𝑠𝑠𝑚𝑚�
 (51) 

Such data was determined in earlier research for ThO2 under conditions producing strong 

crystal phases, a portion of which is displayed in Figure 13. 
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Figure 13. The solubility of ThO2 in an aqueous CsF mineralizer solution at 25k psia 
adapted from [28]. The solubility difference as a function of CsF concentration for the 
same 50° temperature gradient is depicted by a, b, and c.  Solubility (i.e. growth rate) is 
controlled by both the mineralizer concentration and temperature gradient.  The same 
growth rate may be achieved anywhere along a linear solubility line for a given 
temperature gradient.  However, crystal composition may differ based on the competing 
solubility of impurity species. 

 

The solubility data was determined using different concentrations of CsF mineralizer 

solution at 25 kpsia.  Solubility is enhanced by formation of fluoride metal ion complexes 

and therefore shows a dependence on mineralizer concentration.  The temperature 

gradient between the dissolution and crystallization zones can be maintained along the 

nearly linear solubility lines with the same growth rate.  The growth rate, driven by the 

solubility difference as expressed in weight percent on the vertical axis, improves with 

either increased mineralizer concentration or larger temperature gradient.   The growth 

temperatures, for the same gradient, can be altered to operate in a region which 

minimizes crystal impurities. 
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2.6 Stoichiometry and Oxygen Defects 

 Uranium dioxide has the fluorite crystal structure pictured in Figure 14 which can 

be described as a face centered cubic (FCC) lattice of uranium atoms enclosing a simple 

cubic lattice of oxygen atoms.   The conventional unit cell therefore contains the 

stoichiometric O/U ratio of 2. 

 

Figure 14.  The fluorite structure of the UO2 conventional unit cell.  The smaller uranium 
atoms (blue) are located in the FCC position surrounding the larger oxygen atoms (red) of 
a simple cubic. Image produced using [29].  

 

The fluorite structure is maintained between UO2 and UO2.25 as a result of the open 

structure which permits O atoms to be incorporated in interstitial spaces.  Oxygen defects 

influence the structure and electronic properties of UO2. 

The theory of oxygen pressure on the defect formation in UO2 is developed by 

[30] and a summarized adaptation is presented here.  The formation of an interstitial 

uranium defect, Ui, and an oxygen vacancy, VO, from occupied lattice positions UU and 

OO, can be expressed by (52) and (53) [30].          

 2 𝑂𝑂𝑂𝑂 +  𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑖𝑖 + 2 𝑒𝑒− +  𝑂𝑂2 (52) 
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𝑂𝑂𝑂𝑂 =  𝑉𝑉𝑂𝑂 + 2 𝑒𝑒− +  

1
2
𝑂𝑂2 (53) 

 

The rate expressions, substituting n = [e-] and [O2] = p(O2), are described by (54) and 

(55) [30].   

  𝐾𝐾𝑈𝑈𝑖𝑖[𝑂𝑂𝑂𝑂]2[𝑈𝑈𝑈𝑈] = [𝑈𝑈𝑖𝑖]𝑙𝑙2 𝑝𝑝(𝑂𝑂2) ≅  𝐾𝐾𝑈𝑈𝑖𝑖 (54) 

 

 
 𝐾𝐾𝑉𝑉𝑂𝑂[𝑂𝑂𝑂𝑂] =  [𝑉𝑉𝑂𝑂]𝑙𝑙2 𝑝𝑝(𝑂𝑂2)1/2  ≅  𝐾𝐾𝑉𝑉𝑂𝑂   (55) 

 

For the limiting condition that [Ui] >> [VO] and substitution of n = 2[Ui], the expression 

for the Ui concentration is developed by (68) and expressed as (69) [30]. 

  4[𝑈𝑈𝑖𝑖]3  𝑝𝑝(𝑂𝑂2) =  𝐾𝐾𝑈𝑈𝑖𝑖 (56) 

 
 [𝑈𝑈𝑖𝑖] =  �

𝐾𝐾𝑈𝑈𝑖𝑖
4
�

1
3

 𝑝𝑝(𝑂𝑂2)− 13 (57) 

 

The expression for [VO] is given by (58) which is developed by substitution of n = 2[Ui] 

and (57) into (55). 

 
[𝑉𝑉𝑂𝑂] =  

𝐾𝐾𝑉𝑉𝑂𝑂  𝑚𝑚(𝑂𝑂2)
1
6

 �2𝐾𝐾𝑈𝑈𝑖𝑖�
2
3

   (58) 

 

For the limiting condition that [Ui] >> [VO] and corresponding substitution of n = 2[UO], 

the defect concentrations are given by (71) and (72) [30].  If one considers this limiting 

condition most appropriate, the reduction of oxygen vacancies accompanies an increase 

of the oxygen pressure. 
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[𝑉𝑉𝑂𝑂] =  �

𝐾𝐾𝑈𝑈𝑖𝑖
4
�
1
3  𝑝𝑝(𝑂𝑂2)− 16   (59) 

 
[𝑈𝑈𝑖𝑖] =  

𝐾𝐾𝑈𝑈𝑖𝑖  𝑚𝑚(𝑂𝑂2)− 23

� 2 𝐾𝐾𝑉𝑉𝑂𝑂�
2
3 

     (60) 

 

Hypostoichiometric UO2 can be described by Frenkel defect formation in which an 

oxygen atom occupies an interstitial site within the unit cell.  The requirement of charge 

compensation necessitates that the U(IV) atoms in the vicinity of the interstitial anion 

become U(V) [30].  The formation of the interstitial oxygen defect, Oi, is described by 

(61) in which UU remains the uranium atom in a normally occupied lattice position, Vi is 

the unoccupied interstitial vacancy, and UU’ is the oxidized uranium atom resulting from 

charge neutrality. The concentration of the interstitial oxygen can be expressed by (62).  

Considering that the unit cell stoichiometry changed from UO2 to UO3 or UO2+x where 

x = 1.  Substitution of x = [Oi] into (62) indicates that x is proportional to the square-root 

of the oxygen pressure shown in (63). 

 
𝑈𝑈𝑈𝑈 +  𝑉𝑉𝑖𝑖 + 

1
2
𝑂𝑂2 =  𝑈𝑈�̇�𝑈 +  𝑂𝑂𝑖𝑖 (61) 

 
[𝑂𝑂𝑖𝑖] =  

𝐾𝐾𝑂𝑂𝑖𝑖[𝑈𝑈𝑈𝑈][𝑉𝑉𝑖𝑖] 𝑝𝑝(𝑂𝑂2)
1
2

[𝑈𝑈𝑈𝑈′]
 (62) 

 𝑑𝑑 ∝  𝑝𝑝(𝑂𝑂2)
1
2 (63) 

 

The mechanism of uranium oxidation, however, is more complicated than the simple 

addition of an interstitial oxygen to the fluorite cell.  Recent research has shown that the 

inclusion of oxygen into a UO2 lattice through a (111) surface occurs in an ordered and 
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periodic way which differs from classical diffusion [31].  High temperature 

measurements between 600 and 1000 °C relating the equilibrium oxygen pressure to 

oxide stoichiometry show a more complex relationship than that described by (63) [30]. 
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III.  Crystal Growth and Characterization 

3.1 Growth and Analysis of UO2 Crystals 

The refinement of the growth process is both iterative and empirical; each growth 

reaction building upon the results of the previous reaction to produce a higher-quality 

crystal.  The name of each crystal sample uses an alphanumeric scheme which describes 

the origin and chronological reaction serial of the form; ‘AAA-B-##C’.  The first string, 

‘AAA’, is the feedstock description. The second, ‘B’, is either ‘T’ for transport or ‘SN’ 

for spontaneous nucleation.  The last string, ‘##C’, is an index number identifying the 

reaction number and a letter which is used to distinguish between individual crystals 

recovered from the same reaction.  For example, UO2-T-19a represents the first of 

multiple crystals from reaction number 19 produced under transport growth conditions 

from a UO2 feedstock.  For simplification, the sample may be abbreviated ‘T19a’. 

 

3.1.1 Phase Study 

In the case of UO2 for which hydrothermal growth is novel, a series of 

experimental crystal growth reactions were used to determine appropriate growth 

conditions for crystal production.  Varying only the mineralizer type and concentration, a 

total of 30, 7-day spontaneous nucleation growth reactions were conducted at 25 kpsia 

with dissolution and growth zone temperatures of 650 and 600 °C.   The resulting 

crystalline products, or crystal phases, were analyzed.   Desirable growth conditions 

produce UO2 crystals without competing uranium or mineralizer consuming phases.  The 

phase study strongly identified CsF as the mineralizer of choice. 
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3.2 X-ray Diffraction Analysis 

3.2.1 Single-Crystal XRD 

A fragment of the UO2-SN-89b sample was analyzed by single-crystal XRD 

using a Rigaku XtaLAB Mini single-crystal x-ray diffractometer.  The unit cell was 

resolved to 3 orthogonal and identical lattice parameters of length 5.4703 ± 0.0006 Å 

consistent with the fluorite structure.   The lattice parameter of UO2.000 ± 0.001 was 

measured by [32] to be 5.47127 ± 0.00008 Å at 20 °C.  The addition of oxygen beyond 

O/U = 2 contracts the lattice to 5.445 Å at UO2.25, the point at which the UO2+x phase is 

lost [33].  Interpolation between these two values provides a sample stoichiometry of 

UO2.003.  This measurement is conservative in that the measured sample had both a high 

surface to volume ratio and was exposed to ambient oxygen pressure for several days 

prior to the measurement. 

 

3.2.2 Rocking Curve Measurement 

 The single-crystal nature of the samples was confirmed with a rocking curve (or 

omega scan) measurement using a PANalytical Empyrean x-ray diffractometer. The 2ϴ 

absolute scan, Figure 15, showed a single family of Bragg peaks in the diffraction pattern 

indicating that the specimen was a single crystal. 
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Figure 15. The single-crystal XRD absolute scan of the UO2 crystal.  The single family of 
Bragg peaks indicates a single-crystal sample. 

 

A subsequent omega scan (1ϴ), centered on the angle of the (111) 2ϴ peak, was 

collected at 0.01° increments between 13.5962° and 15.5862°.  The full-width at half-

maximum (FWHM) was determined by a Gaussian fit to be 0.4566 ± 0.0007°.  The small 

angle indicates that the crystal is well-ordered and reflects the variation in the mean 

distance between the (111) planes of the single crystal. 
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Figure 16. The rocking curve of the UO2-T-29b (111) sample about the Bragg angle of 
the single peak.  The FWHM of 0.4566 ± 0.0007° was determined by a Gaussian fitting. 

 

The primary results of the XRD measurement is confirmation of the orientation and 

single-crystal nature of the sample.  However, the centroid angle of the rocking curve, 

14.6°, indicates a lattice parameter of 5.43 Å indicating that the measured crystal was 

oxidized from several days of exposure to atmospheric oxygen pressure prior to 

measurement. 
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3.3 PES Analysis 

3.3.1 XPS Confirmation of Stoichiometry 

XPS spectra of the core and valence levels of UO2-T-18a showed excellent 

agreement with UO2.  The most intense core level photopeaks belong to U4f which show 

shake-up satellite features about 7 eV from each peak.  Figure 17 shows the fitting of the 

U4f region with binding energies summarized in Table 3. For comparison, the spectral 

summary of high-resolution XPS measured by [34], in good agreement with other high-

resolution measurements, of UOx surfaces is presented [35]. 

 

Table 3. The XPS spectral summary of UO2-T-18a and comparative spectra from high-
resolution XPS on UOx [34].   The measured values for T18a are ± 0.03 eV. The absence 
of comparative data indicates the feature either cannot be resolved, ‘- -‘, or does not exist, 
‘n/a’. 

 UO2-T-18a UO2.00 UO2.22 UO1.71 
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U4f7/2 380.24 1.76 380.00 2.00 379.20 2.60 380.60 2.40 
U4f7/2 
Satt. 387.15 3.49 386.90 -- 386.00 n/a n/a n/a 

U4f5/2 391.09 1.79 390.70 2.10 390.10 2.70 391.50 2.40 
U4f5/2 
Satt. 398.07 4.05 397.70 -- 396.70 n/a 398.30 n/a 

U5f 1.43 1.67 1.40 2.4 0.90 2.4 2.70 2.8 
O1s 530.50 2.07 530.50 1.80 529.40 1.70 531.40 1.60 

 

The T18a sample shows excellent agreement with the valence and oxygen binding 

energies of a stoichiometric sample.  The U4f7/2 peak agrees with an O/U = 2.00 but the 

satellite spacing suggests that the sample is slightly hypostoichiometric.   
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Figure 17. The U4f spectrum of UO2-T-18a.  The Al kα3,4 ghost peaks were fitted to 
remove the effects of the nonmonochromated x-ray source.  

 

The measurement was preceded by argon sputtering which is known to leave the 

surface in such a state.  However, the measurement took several hours and surface 

reconstruction is expected under vacuum conditions.  The U5f, a high kinetic energy 

emission, originates from deeper within the lattice and may not reflect the surface 

hypostoichiometry.   

Defining the valence band maximum to be one standard deviation below the U5f 

peak, the T18a sample has a valence band maximum 0.72 eV below the Fermi level.  It is 

estimated that intrinsic UO2 has a 2 eV band gap suggesting the sample must be p-type.  

However, the high-resolution data measured by [34] for UO2.00 produces an even stronger 

indication of p-type with a band edge of 0.38 eV below the Fermi level.  If, however, the 

valence band edge is 0.4σ below the U5f peak, the T18a sample edge falls 1.15 eV below 

the Fermi level and the high resolution data aligns at 1 eV, or one-half the band gap.  
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Although this does not have a solid statistical basis, it does explain the hypostoichiometry 

observed in the T18a sample and suggests the material is slightly n-type.  

 

3.3.2 Auger Parameter Analysis 

The NOV:U4f Auger parameter, insensitive to charging effects or calibration 

error, indicates the T18a sample is UO2 or perhaps even UO2-x.  The Auger parameter of 

T18a was measured to be 660.7 eV which is above the value of 660.0 eV measured for 

UO2 [36].  For comparison, the values for U, UO3, U3O8, and U4O9 are 658 eV, 659.2 eV, 

659.6 eV, and 659.8 eV respectively [36].  There are no known published values for 

hypostoichiometric UO2-x NOV:U4f Auger parameter. 

The NOO:U4f Auger parameter was also measured on the UO2-T-29b sample 

with similar results: 564.6 eV which is above the value of 564.3 eV measured for UO2 

[36].  For a similar comparison, the values for U, UO3, U3O8, and U4O9 are 564.0 eV, 

564.2 eV, 564.0 eV, and 563.9 eV respectively [36].  There are no known published 

values for the hypostoichiometric UO2-x NOO:U4f Auger parameter either. 
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IV.  Electronic Characterization of the Crystal Surface 

4.1 Surface & Subsurface Stoichiometry 

The stoichiometry of the samples was investigated using depth-resolved XPS.  A 

binding energy shift of the U4f core level would indicate a change in the chemical 

environment of the U atoms.  As the angle of the sample relative to the electron analyzer 

is altered from normal, the surface is preferentially measured.  If the surface was 

hyperstoichiometric, the binding energies of the core levels would shift by as much as 

1.5 eV higher as outlined in Table 4.  It should be noted, however, that a measured peak 

can be influenced by a contribution from multiple oxidation states [35] [34].   

Table 4.  The binding energies of the U4f peaks as a function of oxidation state. 

UOx 
U4f7/2 BE 

[eV] 
U4f5/2 BE 

[eV] 

UO2 UO2 380 390.9 

UO2.25 U4O9 380.5 391.4 

UO2.5 U2O5 380.7 391.6 

UO2.7 U3O8 381 391.7 

UO3 UO3 381.5 392.2 
 

 Three UO2 samples were investigated by depth-resolved XPS, UO2-T-18A, and 

UO2-T-29a&b.  The T18a sample had a spheroid geometry while the T29 samples were 

planar.  The information limit of the sub-surface is approximately 50 Å.  The results 

indicated that the crystal surface may oxidize under ambient conditions and stable under 

vacuum. 
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4.1.1 Depth Resolved Chemical Shift (Surface to Core Level Shift) 

The UO2-T-18A sample was mounted, sputtered, and aligned in the XPS system 

with the sample surface normal to the electron analyzer. The angle was varied from 0° to 

59° in 5° increments.  At angles steeper than 59°, the XPS signal was no longer resolved.  

A binding energy shift of approximately 1 eV was observed as shown in Figure 18.  

Signal diminution was also observed at higher angles.  However, the spherical nature of 

the sample is not conducive to this measurement technique.  The sputtering process does 

not prepare the surface under the crystal equator, a region that increasingly provides 

signal as the angle is increased.  The binding energy shift can be attributed to the 

oxidized and un-sputtered crystal surface which was exposed for many days to 

atmospheric oxygen before measurement.  Therefore, the sputtered surface is indicative 

of O/U = 2 indicating that the crystal bulk is nearly stoichiometric UO2.  The unprepared 

surface indicates that higher oxides form on a bulk UO2 crystal under atmospheric 

conditions. 
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Figure 18.  The depth-resolved XPS measurements of the U4f region from normal (0°) to 
59°.  The binding energy shift of the 4f core levels indicates an increase in the oxidation 
state of U.   The inefficiently sputtered hemisphere of the round sample was responsible 
for the increasing contribution of higher uranium oxides to the peak at steep angles and 
subsequent large binding energy shift. 

 

The experiment was repeated for both the T29a (100) and T29b (111) samples 

which had planar geometry and measured 9×12 mm.  They completely filled the 

spectrometer field of view and were uniformly sputtered.  The most surface sensitive 

angles were measured 6 days after the experiment was initiated providing the maximum 

time for surface reconstruction following surface preparation.  Both samples exhibited a 

minor binding energy shift, on the order of +0.15 V, between the 0° and ~90° 

measurements. The results are summarized in Figure 19 and Figure 20.  The normal angle 

measurements were repeated at the conclusion of the experiment and were essentially 

unchanged.  The repeated T29a (100) measurement remained the same while the T29b 
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(111) measurements was shifted by -0.06 eV.  Near 90°, the sample edge contributes to 

the signal which is observed by a drop in binding energy. 

 

Figure 19.  Depth resolved XPS on the UO2-T-29a (100) sample.  The binding energy 
shift from minimum to maximum value is 0.11 eV for the 4f7/2 and 0.14 eV for 4f5/2 . 

 

Figure 20. Depth resolved XPS on the UO2-T-29b (111) sample.  The binding energy 
shift from minimum to maximum value is 0.16 eV for the 4f7/2 and 0.13 eV for 4f5/2 . The 
0° measurement was repeated at the end of the experiment and showed a shift to lower 
energy by 0.06 eV. 
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A small shift in the binding energy between the surface and subsurface is 

consistent with the increased contribution from higher oxidation states near the surface.  

The small magnitude of the shift suggests that the stoichiometry is similar.  This is 

corroborated by similar but high-resolution depth-resolved measurements made at 70 ⁰C 

by [35] on a polycrystalline UO2 sample which showed differing surface to sub-surface U 

4f7/2 contributions from UO2, U3O8, and UO3.  The sub-surface composition, in terms of 

UO2 / U3O8 / UO3, was reported as 32.6 % / 40.6 % / 21.1 % which changed at the surface 

to 29.5 % / 43.5 % / 25 %.  Although the centroid energies of the two measured 4f7/2 

peaks were not reported, the decrease in contribution from UO2 and the increase from 

UO3 are consistent with the measured 4f7/2 peak energy shift. 

 

4.1.2 Depth Resolved Auger 

  The Auger parameters NOV:U4f7/2 and NOO:U4f7/2 were also measured as a 

function of the sample angle with respect to the analyzer.  This measurement is more 

surface sensitive than the XPS depth-resolved U4f measurement alone because the 

kinetic energies of the Auger electrons are about a factor of five lower.  Both measured 

parameters presented a shift toward higher oxidation states as the surface was 

preferentially sampled.  Literature values for the Auger parameters of UOx provide a 

guide to the trend but the sensitivity of the measurement causes imprecise absolute 

agreement.  Figure 21 and Figure 22 summarize the angle-dependent measurements. 
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Figure 21. The angle-dependent U NOV:4f7/2 Auger Parameter shown with an uncertainty 
of ± 0.15 eV.  The dashed line, the parameter for UO2, and the dotted dashed line, the 
value for U4O9,  as measured by [36], are depicted as reference points.  The surface of the 
crystal displayed a trend toward hyperstoichiometry.  

 

 

Figure 22. The angle-dependent U NOO:4f7/2 Auger Parameter shown with an uncertainty 
of ± 0.25 eV.  The dashed line, the parameter for UO2, and the dotted dashed line, the 
value for U4O9,  as measured by  [36], are depicted as reference points.  The surface of 
the crystal displayed hyperstoichiometry.  
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The U NOO:4f parameter has a larger uncertainty based on the diminished signal to noise 

ratio of the NOO feature.  Both measurements support a slight increase in the oxidation 

state of U at the surface and further indicate that the depth of the hyperstoichiometric 

region is probably less than 20 Å. 

 

4.2 Effective Surface Debye Temperature Measurement 

The effective surface Debye temperature was measured by temperature-dependent 

XPS using the sample UO2-T-18a.  This sample was very solid, the product of a slow 

growth, and stable under all temperatures considered in this research.  

 

4.2.1 Debye Experiment 

The crystal was mounted to a tantalum plate with a k-type thermocouple for 

temperature monitoring, placed under high vacuum (10-9 Torr), and sputtered (Specs IQE 

12/38 ion source, 99.999% Ar) with 1 kV Ar+ ions at a nominal beam current of 40 µA 

to remove adventitious contaminants.  Two in vacuo annealing conditions were studied 

post-sputter; a low-temperature anneal at 298 K for 12 hours and a high-temperature 

anneal at 623 K for 12 hours.  X-ray photoemission spectroscopy (XPS) confirmed the 

clean sample surface subsequent to sputtering when the C1s peak intensity dropped 

below 3% of the U4f7/2 photopeak intensity. 

The XPS system was allowed to reach steady-state operating conditions over the 

course of 24 hours prior to measurement which used Mg k-alpha radiation (1253.6 eV), 

an energy step-size of 100 meV, and a pass energy of 100 eV with the analyzer 
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positioned normal to the sample surface.  At 303 K, this provided over 1.2×106 counts 

under the U4f7/2 photopeak after subtraction of a Shirley background.   A total of 5 

separate XPS spectra were measured at each of 14 different temperatures spanning the 

range of 303-573 K for each sample preparation from which the mean intensity was used 

for computation. 

XPS spectra of the U4f, U4d, U5f, and the O1s regions were measured for the 

298 K annealed surface to verify the phase change followed by measurement of the 

623 K annealed surface U4f region to observe the annealing effect on the effective Debye 

temperature.  The U4f7/2 photopeak is appropriate for the computation of the XPS derived 

ΘDE since it is the most intense core level feature of the UO2 spectrum and is highly 

localized. 

An example deconvolution of the U4f spectrum, shown as Figure 23, was 

constructed into the principle component peaks shown in Table 5 using a Shirley 

background and Voigt profile line shapes (Gaussian/Lorentzian = 80%). 
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Figure 23. The deconvolved XPS spectrum of the U4f region.  The raw XPS data is 
shown as open circles.  The background and peak line shapes are shown as thin lines with 
the resulting envelope shown as a heavy line. 
 

The Mg kα excitation source is comprised of an unresolved doublet, kα1,2, with a centroid 

energy of 1253.6 eV.  The Mg kα3 and kα4 lines contribute ‘ghost peaks’ displaced by -

8.4 eV and -10.1 eV with respective intensities of 0.08 and 0.041 of the kα1,2 feature [37].  

This phenomenon is primarily of concern for high-intensity peaks and is responsible for 

the high-BE shoulder of the U4f7/2 peak asymmetries which could be interpreted as a 

uranium oxidation state > 4+ without careful fitting.    The U4f7/2 ghost peaks are also 

visible at ≈ 371 eV.    The sample mount contributes the Ta4p3/2 photopeak at 400 eV.  

The satellite features (‘shake-up’ peaks) located ≈ 7 eV higher than the main peaks are a 

distinct feature of UO2 and indicate alternate final electronic states of U [34] [38] [39].  

Other regions were analyzed in a similar fashion. 
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Table 5. A nominal deconvolution of the U4f XPS spectral region at 303 K.  The values 
shown are from a single measurement. Major peaks were well-supported by an integrated 
intensity in excess of a million counts. 

Photopeak Binding Energy [eV] FWHM [eV] Intensity [counts] 

U4f7/2 380.05 1.905 1251735 

U4f5/2 390.88 2.110 938801 

U4f5/2 Mg kα3 382.48 2.110 75104 

U4f5/2 Mg kα4 380.78 2.110 38491 

U4f7/2 Satellite 386.71 1.905 174816 

U4f5/2 Satellite 397.43 2.110 143665 

Ta4p3/2 400.22 4.428 142638 

 

4.2.2 Debye Analysis  

After sputtering and annealing the sample as previously described, the natural 

logarithm of photopeak intensity as a function of absolute temperature was plotted to 

determine the Debye-Waller factor.  The plots are shown in Figure 24 for each U peak.  

The data shows two distinct regions of linearity for the core uranium lines; 300-450 K 

and 470-600 K.  The intersection of the linear fit lines marks the threshold temperature at 

which the crystal surface undergoes a phase change which is between 476 K and 486 

based on the U4f7/2 peak.  The slope of the fitting line above and below the threshold 

temperature equates to a transition from a high ΘDE to a low ΘDE suggesting that the 

(UO2+x + U4O9-y) phase presents a stiffer surface than the (UO2+x) phase.  The 

computation of ΘDE from (44) is summarized in Table 6 and Table 7 using a scattering 
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center mass of 238 a.m.u. for depleted uranium.  The uncertainty in the effective Debye 

temperature was computed from a 95% confidence interval about the fitted slope. 

  

 

Figure 24. The natural logarithmic ratio of intensities for the uranium peaks as a function 
of temperature.  The reference intensity was the intensity measured at 303 K for both 
surface annealing conditions. The 623 K annealed surface exhibits the shallowest slope 
indicating a high effective Debye temperature (500 ± 59 K) post-transition corresponding 
to the (UO2+x + U4O9-y) phase.  The transition of the crystal surface to the (UO2+x) phase 
is marked by a sharp change in the intensity ratio point near 475 K.  The slope post-
transition indicates a lower effective Debye temperature (165 ± 21 K) for (UO2+x).      
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Table 6. Summary of the effective Debye temperature computation from the temperature-
dependent, photoelectric intensity derived Debye-Waller factor of the sample annealed at 
298 K for 12 hours.  The U5f valence state does not follow the Debye-Waller relationship 
and is presented for comparison. 

Peak Temperature 
Range [K] 2W Fit 𝐑𝐑𝟐𝟐 𝚫𝚫𝚫𝚫 [𝟏𝟏 Å⁄ ] 𝚯𝚯𝐃𝐃𝐃𝐃 [K] 

U4f7/2 
300-470 0.00293 ± 0.000103 0.996 

15.1 
219 ± 4 

500-620 0.00898 ± 0.000357 0.904 125 ± 1 

U4f5/2 
300-460 0.00290 ± 0.000124 0.994 

15.0 
219 ± 5 

500-620 0.00101 ± 0.000246 0.980 139 ± 1 

U4d5/2 
300-460 0.00101 ± 0.000135 0.946 

11.6 
285 ± 19 

500-620 0.00430 ± 0.000338 0.980 138 ± 6 

U4d3/2 
300-460 0.00197 ± 0.000522 0.814 

11.1 
197 ± 27 

500-620 0.00648 ± 0.000790 0.954 108 ± 7 

U5f 
300-460 0.00193 ± 0.000269 0.940 

18.1 
323 ± 23 

500-620 0.00197 ± 0.00649 0.310 523 ± 33 

 

Table 7.  Summary of the effective Debye temperature computation from the 
temperature-dependent, photoelectric intensity derived Debye-Waller factor of the 
sample annealed at 623 K for 12 hours. 

Peak Temperature 
Range 

2W Fit 𝐑𝐑𝟐𝟐 𝚫𝚫𝚫𝚫 [𝟏𝟏 Å⁄ ] 𝚯𝚯𝐃𝐃𝐃𝐃 [K] 

U4f7/2 
300-450K 0.000687 ± 0.000064 0.951 15.1 500 ± 59 
470-570K 0.00642 ± 0.000631 0.970 165 ± 21 

 

A comparison of the U4f7/2 data indicates the 298 K annealed surface has a lower ΘDE 

than the 623 K annealed surface, likely the result of a comparative increase in surface 

disorder from low-temperature annealing.  The transition temperatures, estimated from 

the intersection of the fitting lines, are summarized in Table 8 as well as the associated 

uncertainty. 
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Table 8. Summary of the photoelectron kinetic energy, attenuation length in a UO2 lattice 
(TPP-2M, 99% attenuation), and measured transition temperature of the U photopeaks.   
The attenuation length illustrates the surface sensitivity of the measurement. 

Sample Peak 
Photoelectron 
Energy [KE] 

Attenuation 
Length [Å] 

Transition 
Temperature 

[K] 
628K Annealed U4f7/2 874 63 476 ± 91 

298K Annealed 
 

U4f7/2 874 63 486 ± 38 
U4f5/2 863 62 485 ± 29 
U4d5/2 514 43 500 ± 59 
U4d3/2 474 41 516 ± 69 

 

 The transition temperature of the 298 K annealed sample, 486 K, is higher than 

that of the 623 K annealed sample, 476 K.  Based on [40], the 298 K annealed sample 

surface had a higher O/U ratio.   The binding energy of the U4f7/2 peak also indicates that 

the 298 K annealed sample had a comparatively higher O/U ratio.  The centroid of the 

fitted peak as a function of absolute temperature is plotted as Figure 25.  The BE of 

U(IV)O2 is 380.00 eV which is consistent with the 623 K annealed sample above the 

experimentally determined threshold temperature of 476 K at which the sample surface is 

primarily UO2 [34] [38].  A shift to higher BE indicates uranium oxidation and a shift 

lower indicates reduction. Both surfaces were therefore slightly hyperstoichiometric with 

the 623 K annealed surface closer to stoichiometric UO2.  Annealing above the transition 

temperature may have preferentially established the 623 K surface as UO2 and retarded 

the formation of the U4O9 structure prior to measurement.  The BE measurement, with a 

difference of only 0.1 eV between the maximum and minimum, indicates that the U of 

both sample surfaces was slightly reduced with increasing temperature but does not show 

a distinct reduction at the threshold temperature. Therefore, the stoichiometry of the two 

phases are similar.   U4f photoelectrons have the highest core-level energy in the dataset 
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and the deepest sampling depth.  The attenuation length in a UO2 matrix is approximately 

63 Å or 11.5 unit cells as shown in Table 8 [41].  If the surface phase is limited in depth, 

the U4f signal may sample into the bulk-like sub-surface which would diminish the 

contribution from higher oxidation states.   

 

Figure 25. The U4f7/2 centroid energy measured at different temperatures for both 
annealing conditions.  The surface of both samples was hyperstoichiometric at the onset 
of measurement and reduced with increasing temperature as evidenced by the shift to 
lower energy.  The 623 K annealed sample is closer to the expected value of 380.00 eV 
for stoichiometric UO2. The error bars of ± 0.05 eV are an artifact of the spectrometer 
energy calibration. 
 

 It is also evident that the U5f photopeak, a valence state, does not follow the same 

intensity diminution shown by the core-levels of the U4d and U4f above the transition 

temperature.  The U5f peak intensity loss is more gradual suggesting the temperature 

effect is partially offset by an intensity increase.  This is also consistent with the 

reduction of U(>IV) to U(IV).     
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The O1s feature resulting from oxygen in proximity to uranium at 529.9 eV (not 

depicted) diminishes with increasing temperature consistent with excess oxygen leaving 

the surface structure.  Unfortunately, the Ta-O bond of the sample mount also contributes 

to this spectral peak.  Analysis of the Ta4d5/2 peak evolution with increasing temperature 

supports the conversion of Ta2O5 to TaO2.  Thus, the diminishing O1s signal at 529.9 eV 

can be explained by TaOx and cannot conclusively support the uranium phase change.   

 The experimentally derived linear expansion coefficient data for polycrystalline 

UO2, measured by [42] as function of temperature, is plotted in Figure 26 on the minor 

axis along with the U4f7/2 data for comparison. 

 

Figure 26. The natural logarithmic ratio of U 4f7/2 intensity for both surface preparations 
on the major axis compared to the linear expansion coefficient, α, for UO2 as a function 
of temperature found in the literature on the minor axis [42] .  The change in α occurs at 
≈490 K which is in good agreement with the observed phase change at 476 K determined 
by XPS. 

 The regions of constant ΘDE intersect near the point identified by [42] at which 

the lattice expansion coefficient shows a marked change in the expansion rate.  The 
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relationship between the linear expansion coefficient, α, the lattice parameter, a, and the 

temperature, T, is given by (64) [43]. 

  

α =  
1
a

 
Δa
ΔT

 

 

(64) 

The data for α displays two regions of linearity separated at ≈ 490 K (493 ± 11 K) based 

on the intersection of the two linear fit lines.  The data presented by [42] was not derived 

from a single crystal, does not have an estimate of error, and is scattered near the 

transition temperature.  However, it does corroborate the phase transition temperature for 

a sample reported to have nominal UO2 stoichiometry which is well within the margin of 

experimental error [42]. 

  

4.2.3 Debye Summary 

The effective Debye temperature of nearly stoichiometric UO2 in the mixed phase 

of (UO2+x + U4O9-y) was measured to be 500 ± 59 K for a clean surface annealed under 

high-vacuum at 623 K for 12 hours.  The effective Debye temperature of nearly 

stoichiometric UO2 in the single (UO2+x) phase was measured to be 165 ± 21 K on the 

same surface heated beyond the phase transition temperature.  The transition temperature 

was experimentally measured to be 476 ± 91 K.  Corroborating photoemission 

measurements support both the near-UO2 stoichiometry and the phase transition 

temperature which is also in good agreement with published data indicating an abrupt 

change in the linear expansion coefficient of the UO2 lattice.  The measured UO2 
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effective surface Debye temperature is lower than the published range of bulk UO2 

Debye temperatures which is 182 to 377 K [40] [44].  This is not unexpected as 

commonly occurring, stable UO2 surfaces are expected to relax at the lattice-vacuum 

interface where long-range order is abruptly halted  [45] [46].  Despite the refractory 

nature of UO2 which melts above 3000 K, the effective Debye temperature is quite low.  

This has several important implications for the production of UO2 based semiconducting 

devices.  The crystal surface should readily accept dopants by ion implantation or 

diffusion but will be hindered by the presence of a stiffer, mixed-phase surface region 

which has an effective Debye temperature higher than that reported for bulk UO2.  

Additionally, the operation of such devices would necessarily need to remain below the 

phase transition temperature which is likely a factor of dopant concentration just as it is a 

function of the O/U ratio.  The reorganization of the crystal structure may adversely 

affect the special arrangement of the dopant concentration and deleteriously effect device 

operation.  To first order, this limit can be estimated by the transition temperature of 

stoichiometric UO2 which is approximately 470 K (197 °C).  Common integrated circuits 

have maximum temperature operating limits of 70 °C and maximum storage temperature 

limits of 150 °C [47].   Neglecting the temperature-dependent atomic diffusion of a 

dopant which may occur at lower temperature, the phase transition temperature does not 

appear to restrict the operation of doped UO2 devices. 

4.3 Work Function Measurements 

Two oriented samples UO2-T-29b (111) and UO2-T-29a (100) were grown large 

enough for work function measurements.  As such a measurement relies on the collection 
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of low energy photoelectrons, the sample must completely fill the analyzer field of view 

which was experimentally measured to be a rectangle 6 mm high by 10 mm wide. 

4.3.1 Experiment and Analysis 

The photoelectric work function, Φ𝑃𝑃𝑃𝑃𝑃𝑃, was determined by x-ray photoemission. 

Spectra were measured of the secondary electron cut-off region using a pass energy of 

100 eV and a 20 meV step-size. A Keithley 2200-60-2 precision power supply was used 

to provide a 10 V potential between the analyzer and the sample to separate low-energy 

spectrometer artifacts from the secondary electron cut-off (SEC). This placed the Fermi 

level of each sample at a binding energy of -10 eV.  Each work function value was then 

determined by a linear fit to the SEC and corrected by 0.43 eV, one-half of the full-width 

at half-maximum of the 0.85 eV Al Kα line-width [12].  Measured values have an 

associated uncertainty of ± 0.36 eV due primarily to the excitation photon width. 

Measurements were taken continuously every 3.3 minutes beginning 7 minutes 

post-sputter to observe the effects of surface reconstruction at 299 K and 4.7×10-8 Torr.  

A polynomial fitting of the early data provided an estimate of the work function 

immediately upon cessation of sputtering. These values are 5.66 eV (111) and 5.56 eV 

(100).   For sake of comparison, the work function of U metal at 300 K is 3.54 ± 0.03 eV 

[48]. 

Figure 27 provides the initial and maximum measured Φ𝑃𝑃𝑃𝑃𝑃𝑃 of the (111) surface 

determined by the linear fitting of the secondary electron cutoff.  The energy scale is 

corrected for bias and photon line-width. The shift indicates a work function change. 
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Figure 27. The work function of the (111) sample was obtained by a linear fitting of the 
secondary electron cut-off.  The initial measurement and a subsequent measurement 
which yielded the maximum value are depicted along with the respective linear fits.  The 
depicted energy scale is corrected for the photon line width. 

 

The time dependent Φ𝑃𝑃𝑃𝑃𝑃𝑃 for both (110) and (100) crystal surfaces are presented in 

Figure 28.  Both surfaces exhibit an increase in Φ𝑃𝑃𝑃𝑃𝑃𝑃 following the initial measurement 

which eventually stabilizes within 5% above the initial measured value.  The changing 

work function can be explained by surface reconstruction after Argon ion sputtering an 

oxygen-deficient, non-stoichiometric condition resulting from the unequal sputtering 

yields of U and O as well as the influence of vacuum reduction [49] [35].  Oxygen 
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diffusion from the near-surface is expected to be rapid initially [50], slowing as the 

surface approaches stoichiometric UO2 [50] [51].  Interstitial migration in the fluorite 

structure is more rapid in the <111> direction than the <100> direction [51] and the 

energy of the (100) surface is approximately three times higher than that of the more 

stable (111) surface [52] [53], both of which explain the comparatively different work 

function change rates.  The maximum work function values were interpreted to be those 

of the stoichiometric UO2 surface.  Alternatively, the extent of uranium oxidation on the 

(111) surface may have been greater than that of the (100) surface at the maximum 

values. 

 

Figure 28.  The time-evolution of the work function for the (111) and (100) UO2 surfaces.  
In the figure’s inset, an extrapolation of the trend provides an estimate of the initial work 
function at cessation of sputtering (t=0); 5.66 eV (111) and 5.56 eV (100).  The 
maximum values are 6.28 eV (111) and 5.80 eV (100).  Error bars of ±0.36 eV are 
omitted for clarity. 
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The oxidation of UO2 is accomplished by the depopulation of the 5f state which 

constitutes the valence band maximum.  The formation of UO3 on the surface would 

effectively create a dielectric barrier and a corresponding increase in the work function 

[54].  The formation of UO3 on the surface within the short timeframe and under high 

vacuum and low-temperature conditions seems unlikely.  However, an oxidation study of 

finely divided UO2 (particle diameters < 200 nm) concluded that oxidation proceeded 

from UO2 to clusters of both U4O9 and UO3 directly without the formation of the 

intermediate oxides U3O8 and U3O7 which form prior to UO3 in bulk measurements at 

room temperature [55].  Although the surface geometry of small particles is much 

different than the single crystal surface, it does suggest low-temperature formation of 

UO3 is possible although further investigation would be needed. 

 The decrease in the measured work functions may be caused by the adsorption of 

contaminants, to include water, even under the vacuum conditions [56] [57].  This is 

supported by a work function of 5.3 eV measured on the (111) as-grown crystal surface 

prior to sputtering which is lower than all measured values post-sputter. 

 

4.3.2 Reconstruction Kinetics 

 A large part of surface reconstruction may be the re-oxidation of the reduced, 

oxygen defected surface back to U(IV) and to some extent, higher oxidation states.  The 

transport of oxygen to the reactive surface suggests a diffusion controlled process.  

Considering the formation of a reconstructed layer at the crystal surface, it would be 

expected that the average layer thickness, �̅�𝑑, would be governed in time, t, by the 
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diffusion of oxygen either from within the crystal bulk or from the partial pressure of the 

vacuum.  This is described mathematically by (37) in which D is the diffusion coefficient 

[35]. 

 �̅�𝑑  ∝ √𝐷𝐷𝐷𝐷 (65) 

 

Assuming the growth of the reconstructed layer is responsible for the changing work 

function and the information depth of the PES measurement is sufficient to measure it, 

the average layer thickness is considered proportional to the work function changes 

depicted in Figure 28.  The natural log of ΔΦ as a function of the natural log of t for the 

(111), (100), and the average of the two surfaces is shown in Figure 29.  A linear fit of 

the data provides the slope, m, following (66), expected to be near ½ indicated by (65).  

 

  𝑙𝑙𝑙𝑙(𝛷𝛷𝑠𝑠 −  𝛷𝛷0) =  𝑚𝑚 ln (𝐷𝐷) + 𝑏𝑏 (66) 

 

The (111) surface generally displays the expected (Dt)1/2 behavior of a simple diffusion 

controlled process.  The averaged surface, a first-order representation of a poly-

crystalline sample, dominated by the relatively higher magnitude of the (111) 

measurement, fits the diffusion controlled relation well. 
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Figure 29.  The log of the work function change plotted with respect to the log of time for 
the reconstructing surfaces. 

 

This implies that the (111) and (100) surfaces, reconstructing under identical conditions, 

are governed by a different time-dependent mechanism; the (111) surface appears to 

change with a diffusion-controlled process and the (100) surface by a zero-order process.  

With some speculation, the excellent fit of the averaged data suggests that the diffusion-

controlled oxidation process identified for poly-crystalline UOx may in fact be an 

aggregate result of the disparate oxidation process of Wulff-shaped particles nominally 

comprised of {111} and {100} surfaces [58].  However, this cannot be concluded with 

the available data.  
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 A body of research exists on the oxidation rate of UOx under the conditions of 

either elevated temperatures, oxygen partial pressure, or both, but less is published for the 

low pressure and low temperature regime [35] [59] [60] [61]. However, the time-

dependent work function data for both the (111) surface as well as the averaged data was 

compared to the work of [35] in which the rate of in-growth of U(VI) on the surface of a 

partially reduced poly-crystalline UO3 sample was measured.  Although the photo-

luminescent (PL) emission measurement was conducted under 760 Torr of O2 pressure, 

the sample temperature was also 25 °C [35].  The change of work function between the 

first measured and maximum values along with the corresponding times was compared to 

the same ratio of PL emission intensity.  The time constant, given by (67) which is 

expressed in terms of the work function, was calculated as 0.35 for the (111) sample and 

0.36 for the averaged data.  Both values are approximately half of the 0.69 value 

calculated from the PL measurement data. 

 
 𝛷𝛷1
𝛷𝛷2

=  �𝐷𝐷 𝑠𝑠1
𝐷𝐷 𝑠𝑠2

 =  � 𝑠𝑠1
 𝑠𝑠2

 (67) 

4.3.3 Work Function Summary  

The first ever photoelectric work functions of the (111) and (100) surfaces of 

hydrothermally grown UO2 were measured at 6.28 ± 0.36 eV (111) and 5.80 ± 0.36 eV 

(100).  Both values seem reasonable as they reference the valence band maximum and are 

approximately 2 eV, the UO2 band gap, greater than the work function of U metal.  This 

result is encouraging and supports the predictability of prepared UO2 surfaces for 

electronic device fabrication [62]. 
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4.4 Identification of Cs Contamination by XPS  

The CsF mineralizer is highly soluble and not expected to entrain or deposit 

within the synthesized crystals.  Analysis by XRF with a detection threshold on the order 

of 100 ppm, or 0.01 a/o, identified Cs in only two samples.  In both cases, it was in 

concentrations below 1 a/o, detected at multiple sample locations, and appeared 

homogenously distributed.  One of the samples was produced in the same reaction as two 

other crystals which did not contain Cs.  During the cool-down from growth conditions, it 

is possible that the mineralizer precipitated onto the surface of the crystals as it is 

common for gross contaminants to adhere to the grown crystals when they are removed 

from the reaction vessel.  This surface is removed by sonication in deionized water.  

Although it is possible that the Cs contamination was limited to the surface, other 

samples which did not indicate Cs by XRF analysis, did contain Cs as identified by XPS 

after several hours of sustained heating above 200 °C.  In these cases, it is believed that 

the Cs migrated to the surface and concentrated above the XPS threshold for detection, 

approximately 10,000 ppm, or 1 a/o.   This was further confirmed by removing the Cs 

enriched surface by Ar ion sputtering and re-measuring.  The Cs, initially absent at room 

temperatures, re-appeared after similar heating conditions. 

 

4.4.1 Temperature Dependence of Cs Migration 

The temperature-dependent migration of Cs to the surface was studied using XPS 

analysis of the U4d and Cs3d region in the binding energy range of 790 and 720 eV. The 

XPS spectrum at 70 °C is shown in Figure 30.   
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Figure 30. XPS spectrum of the U4d region using Mg kα radiation on the clean UO2 
surface at 70 °C showing the U4d3/2 and U4d5/2 peaks with the O KLL Auger in the 
center. The U4d shake-up satellites are also observed. 

 

The most prominent peak is the U4d5/2 at 740 eV and Cs is not visible.  After heating the 

sample to 350 °C for several hours, the Cs signal is clearly evident in the spectrum 

presented as Figure 31 in which a Cs4d5/2 peak at 725 eV has appeared and the peak at 

740 eV now has a contribution from both U4d5/2 and Cs4d3/2.  The Cs4d feature is the 

most intense doublet and the degeneracy of the d-shell is used to fit the intensities of the 

Cs4d3/2 and Cs4d5/2 peaks at the ratio of 2:3.   Because the intensity of both the U and Cs 

core lines are diminished at elevated temperature, a comparison of the ratio of Cs to U 

accurately describes the increased Cs concentration at the crystal surface with respect to 

the U. 
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Figure 31. XPS spectrum of the U4d region using Mg kα radiation held at 350 °C for 
several hours showing the Cs4d3/2 and Csd5/2 peaks along with the U4d and O KLL Auger 
features.  The core U lines are diminished by the Debye effects at elevated temperature 
which is most striking for the U4d3/2. 

 

4.4.2 Temperature Threshold of Cs Diffusion 

The sample was sputtered and held at nine different temperatures, each for a 

period of 5 hours, in which the U4d region was measured 12 times.  The spectrum was 

fitted and the ratio of the Cs4d3/2 to U4d5/2 intensity was plotted as a function of the 

sample temperature, summarized in Figure 32.  The line is a least squares fit of the data 

and clearly shows a point near 475 K at which the Cs/U ratio is markedly increased.  This 

threshold temperature is similar to the phase change temperature identified in the Debye 

measurements. 
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Figure 32. Ratio of the U4d5/2 : Cs4d3/2 intensity as a function of sample temperature. 

 

 If the threshold temperature is indeed the same as that determined by Debye 

measurements, the two regions of Cs concentration with respect to sample temperature 

correspond to a phase change from a mixed (UO2+x + U4O9-y) phase to a (UO2+x) phase 

which is clearly preferential to Cs migration.  The implications of this finding are two-

fold:  the growth process may in fact produce crystals with Cs impurities and the 

impurities move to the surface rapidly above 475 K.  From a crystal purity perspective, 

the distribution of the Cs must be determined in order to generalize these results from the 

surface to the bulk of the crystal.  The impurities may also be preferentially concentrated 

at the surface by heating above 475 K where it can be removed.  Were impurities 
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purposely implanted for electronic doping, impurity migration, once implanted, can be 

reduced by avoiding a phase change. 
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V.  Contact Study 

5.1 Determination of Candidate Metals for Electrical Contacts 

An important result of measuring  Φ𝑃𝑃𝑃𝑃𝑃𝑃  is for assessing metals for electronic 

contacts. The relationship between the metal work function, Φ, and the electronegativity, 

X, of the UO2 semiconductor establishes the energy barrier presented to charge carriers.  

In the flat band approximation, X is obtained by subtracting the band gap from Φ𝑃𝑃𝑃𝑃𝑃𝑃.  

Since the band gap was not measured in this research, 2.1 ± 0.1 eV was used as 

established in [63] [64].  Thus, our measured values indicate X, as 4.2 eV (111) and 

3.7 eV (100) both ± 0.4 eV.  For comparison, X for GaP, with a band gap of 2.26 eV, is 

4.0 eV [15].  

 In the absence of Fermi level pinning, the Schottky-Mott relationship describes 

the barrier height, 𝜙𝜙𝑏𝑏, of a metal-semiconductor junction in terms of Φ and X [15]. 

Equations (48) and (49) estimate the barrier when the semiconductor is strongly n-type or 

p-type as denoted by the subscripts n and p.  In the case of stoichiometric UO2, equating 

𝜙𝜙𝑏𝑏𝑅𝑅 and 𝜙𝜙𝑏𝑏𝑚𝑚 and solving for 𝜙𝜙𝑚𝑚 predicts a minimum barrier (the Ohmic condition) when 

the work function is equal to half of the band gap plus the electronegativity.  This is in 

contrast to a rectifying, or Schottky contact, which results from a large barrier. 

Another consideration related to making electrical contacts, from a 

crystallographic perspective, is the lattice compatibility at the contact metal and 

semiconductor interface. Strain is reduced when the metal lattice spacing is similar to that 

of either the fluorite UO2 unit cell, 5.471 Å, or the complementary sub-lattice cell spacing 

of 3.87 Å; found on both (111) and (100) surfaces.  Figure 33 represents the conventional 
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unit cell (a) as well as well as the (100) surface (b), in which both lattice parameters of 

interest are indicated. 

 
(a) 

 

 
(b) 

 

Figure 33. The (100) surface viewed from the <100>.  The oxygen atoms (large spheres) 
are red, the uranium atoms (small spheres) are blue.  The drawing is scaled by ionic 
radius.  The conventional unit cell is illustrated by the nine uranium atoms of the FCC-
like (100) in which four oxygen atoms are located.  The sub-cell is offset by 45°. 

 

A particular metal is considered an acceptable contact candidate if the lattice 

parameter matches to within 10% of 3.87 Å or 5.47 Å and the work function is i) within 

10% of that required for an Ohmic contact or ii) greater than a 10% difference for a 

Schottky contact (considering only the magnitude of the work function mismatch).  In 

confirmation of our method, we have observed the rapid growth of UO2 on a Cu surface 

(Fm3m, a = 3.61 Å) which may be explained by a close match of the sub-lattice 

orientation.  In order to reduce potential metal contact materials to a list of practical 

choices, metals with a resistivity less than 12×10-8 Ω m at 300 K were considered.  Using 

this methodology, candidate metals for electrical contacts on hydrothermally grown UO2 

are given in Table 9. 
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Table 9.  Candidate metals for electrical contacts. The parenthetical value following the 
contact type in the two rightmost columns indicates the order of best agreement. 

Candidate 
Contact Metal 

Work 
Function+ 

[eV] 

Lattice Constant++ 
[Å] 

Resistivity 
@300K, 1 atm++  

[×10-8 Ω m] 
UO2 (111) UO2 (100) 

Zn 3.63 2.67, 4.95 6.06 Schottky (1) Schottky 
(1) 

Mg 3.66 3.21, 5.21 4.51 Schottky (2) Schottky 
(2) 

Cd 4.08 2.98, 5.62 6.80 Schottky (3)   

Cu 4.65 3.61 1.73   Ohmic (1) 

Be 4.98 2.29, 3.58 3.76   Ohmic (2) 

Co 5.00 2.51, 4.07 5.60 Ohmic (5) Ohmic (3) 

Au 5.10 4.08 2.27 Ohmic (3) Ohmic (4) 

Ni 5.15 3.52 7.20 Ohmic (2) Ohmic (5) 

Pd 5.22 3.89 10.80 Ohmic (1)   

Pt 5.50 3.92 10.80 Ohmic (4) Schottky 
(3) 

  [65]      [66] 

 

5.2 Evaluation of Experimental Contacts 

Contacts were fabricated using a paint/melt deposition technique as well as 

mechanical placement.  The paint/melt contacts were fabricated by application of Ag and 

GaIn to opposing sides of a fragment of the UO2-T-29b (111) sample.  Mechanical 

contacts were made by pressing sharpened tungsten pins into opposing facets of two 

crystals, UO2-T-11a and UO2-T-T11b. The choice of metals was made primarily based 

on availability and convenience. Thin Cu wires were then affixed to the contacts allowing 
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current-voltage, I(V), and capacitance-voltage, C(V), measurements using a 

semiconductor analyzer system.  The paint/melt two-point circuit used the Ag contact as 

the positive voltage reference.  The work function of polycrystalline Ag is 4.26 eV, 

slightly higher than that of GaIn, 4.1 - 4.2 eV [67].  It was assumed that rectification 

resulted from the Ag/UO2 interface since the measured electronegativity of the UO2 (111) 

surface is 4.2 eV.  The mechanical contacts were electronically symmetrical and 

rectification was possible given the work function of polycrystalline W is 4.6 eV. 

 

5.2.1 Current-Voltage Measurements 

The I(V) measurement of an Ag/UO2/GaIn device is presented as Figure 34.  The 

larger current values with positive applied voltage indicate a dominant Schottky junction 

with n-type semiconductor.  This is unexpected as UO2 should either insulate or become 

p-type with hyperstoichiometry; the expected surface condition after several days of 

exposure to ambient oxygen pressures.  The absolute value of the forward and reverse 

bias data are compared side-by-side in Figure 34 to confirm n-type behavior.  The larger 

current response at positive voltage suggests the barrier is lowering with positive voltage 

on the Ag contact.  If the material was p-type, the barrier would decrease with negative 

voltage on the Ag contact and the opposite response would be observed.  The barrier is 

predicted by (48) to be 0.06 V assuming an abrupt junction and absence of an interface 

layer.  The generally Ohmic response, similar to a 714.3 Ω resistor at low voltages, seems 

to support this. 
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Figure 34.  The I(V) response of the Ag/UO2/GaIn device.  The response was generally 
Ohmic with a larger rectification in the forward bias.  The absolute value of the reverse 
bias data is displayed alongside the forward bias data for comparison.  A reference line 
representing a 714.3 Ω is displayed for reference.  

 

The I(V) measurements of the W/UO2/W devices are presented in Figure 35 along 

with the Ag/UO2/GaIn device for reference.   The current response of the Ag/UO2/GaIn 

device is an order of magnitude higher but has a similar shaped response curve to the 

T11b W/UO2/W device. The response curve of the T11a and T11b devices are not 

identical despite crystal similarity but do show forward and reverse bias symmetry as 

expected.  The dissimilar current response is probably caused by the contact to crystal 

junction which is sensitive to contact pressure. 
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Figure 35. The I(V) measurements of the W/UO2/W devices and the Ag/UO2/GaIn 
device.   The response of the Ag/UO2/GaIn device is an order of magnitude higher but 
has a similar response curve to the T11b W/UO2/W device.  The LEFT vertical axis 
corresponds to the T29a sample.  The T11 sample current is on the RIGHT side vertical 
axis. 

     

5.2.2 Capacitance-Voltage Measurement 

C(V) data was collected for the Ag/UO2/GaIn device and was analyzed to 

estimate both the dominant carrier concentration and the built-in voltage of the 

metal/semiconductor interface.  The large current response (mA range) and lack of 

distinct rectification absent from Figure 34 makes C(V) derived information prone to 

error especially when transconductance is large.  The energy band diagram of the 

junction is interpreted in Figure 36 which assumes that the semiconductor is n-type.  The 
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upward bending of the bands at the interface also assumes the work function of the metal 

is greater than that of the semiconductor which is not the case for UO2.  However, it is 

helpful for visualizing the extraction of the built-in voltage, Vbi, from the C(V) data.     

 

Figure 36. The energy level diagram for an abrupt metal to n-type semiconductor junction 
adapted from [18]. 

 

 The barrier height, expressed as a voltage, VB, has contributions from V0 and Vbi.   

The bending of the energy bands to align the Fermi level produces the built-in voltage.  

The difference in potential between the Fermi level and the conduction band minimum of 

the semiconductor produces V0.  The barrier to electron flow from the semiconductor into 

the metal is quantified by Vbi, given by (68), which is the difference between the junction 

barrier, VB, and V0.  V0 is estimated by (69) in which Nc and Nd are the effective density 

of states in the conduction band and donor band respectively. 
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 𝑉𝑉𝑏𝑏𝑖𝑖 =  𝑉𝑉𝐵𝐵 − 𝑉𝑉0 (68) 

 𝑉𝑉0 =  −𝑘𝑘𝜕𝜕𝑙𝑙𝑙𝑙 �
𝑁𝑁𝑉𝑉
𝑁𝑁𝑑𝑑
� =  𝐾𝐾𝑉𝑉 −  𝐾𝐾𝑟𝑟 (69) 

 

Capacitance is defined by (70) in which the static permittivity, 𝜖𝜖𝑠𝑠, is approximated by 

 22𝜖𝜖𝑆𝑆 for UO2, where  𝜖𝜖𝑆𝑆 is the vacuum permittivity [68].  The depletion width in the 

semiconductor bounded by the metal junction is 𝑊𝑊𝑑𝑑 and the cross-sectional area of the 

junction is A. 

 𝐶𝐶 =  
𝜖𝜖𝑠𝑠
𝑊𝑊𝑑𝑑

 𝐴𝐴 (70) 

 

A depletion width of 2 nm is computed using (70) to attain the measured C/A of 

0.35 nF/m2 at 0 V, a reasonable value.  The depletion width of the 1-sided abrupt junction 

is given by (71) in which V is an applied bias across the device and q is the elementary 

charge.  Combining (70) and (71) yields (72). 

 
𝑊𝑊𝑑𝑑 =  �

2 𝜖𝜖𝑠𝑠 (𝑉𝑉𝑏𝑏𝑖𝑖 + 𝑉𝑉)
𝑞𝑞(𝑁𝑁𝑑𝑑)

 (71) 

 

 
�
𝐴𝐴
𝐶𝐶
�
2

=  
2

𝑞𝑞 𝑁𝑁𝑑𝑑  𝜖𝜖𝑠𝑠 
 (𝑉𝑉𝑏𝑏𝑖𝑖 + 𝑉𝑉) (72) 

 

A plot of �𝐴𝐴
𝑆𝑆
�
2
as a function of V yields a slope of 2

𝑙𝑙 𝑁𝑁𝑑𝑑 𝜖𝜖𝑠𝑠 
 and a y-intercept of 𝑉𝑉𝑏𝑏𝑖𝑖. Such a 

plot is presented as Figure 37 which shows non-linear behavior for negative bias. The 

data was taken from 0 to 10 V, down to -10 V, and back again.  The capacitance values 

exhibit hysteresis beyond -5 V, a phenomenon possibly attributed to persistent carrier 
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trapping in the depletion region.  However, this cannot be confirmed with the available 

data. 

 

 

Figure 37. A plot of (A/C)2 vs V.  The measurement started and ended at 0 V, scanning 
out to ±10 V twice, which produces multiple values for the same bias. 

  

A linear fit of the region between -3.5 and 0 V yielded a Vbi of 0.5 V. The slope provided 

an estimate of Nd at 5 × 109 [1/m3].  Nc was estimated between 1 × 1023 and 1 × 1025 

[1/m3] using (73) and a range of electron effective masses, m*, between 0.05 and 1.1 me, 

in which k is Boltzmann’s constant, T is absolute temperature, and h is Planck’s constant.   

The true value of m* is not known and the range was chosen from known semiconductor 

values. 

 
𝑁𝑁𝑉𝑉  =  2 �

2 𝜋𝜋 𝑚𝑚∗ 𝑘𝑘𝜕𝜕
ℎ2

�
3
2�

 
(73) 

 

V0 was estimated to be 0.8 V.  The full barrier height is thus 1.3 V which is much higher 

than the estimate of 0.06 V. 
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5.2.3 Implications of I(V) and C(V) Measurements 

One possible interpretation of the data is that the UO2 at the interface may have a 

bulk n-type to surface p-type transition.  Although stable under vacuum, it has been 

observed that the surface of the UO2 crystal will oxidize in the atmosphere; the condition 

under which the sample was stored for several weeks prior to contact placement.  It is 

thus highly likely that a thin, hyperstoichiometric region was present at the metal-

semiconductor interface.  The presence of this p-type region is supported by the C(V) 

measurement which is junction sensitive.  It is postulated that the shallow depth of this 

layer suppresses the effect on the I(V) curve which is consistent with an n-type material.  

In addition, the generally Ohmic response of the bulk I(V) measurement supports the 

theoretically small (0.6 V) barrier expected of an n-type material. 

 

  



www.manaraa.com

85 

VI.  Pulse Discrimination Experiment 

6.1 Motivation and Purpose 

The primary purpose for characterizing hydrothermally synthesized UO2 is the 

determination of suitability for solid-state radiation detection applications.  Although 

primarily envisioned for neutron detection, the response to γ and α radiation is important 

to understanding the inherent background signal of the material and the development of 

discrimination techniques to determine the signal origin.   Additionally, alpha radiation 

(as well as ions) can be used as a low-energy surrogate for the detection of fission 

fragments following a fission event due to their charge and short path length. 

6.2 Experiment 

A rudimentary radiation detector was fabricated from a UO2 crystal and the 

response to different radiation sources was observed.  Analysis of the data did not 

conclusively demonstrate successful detector operation.  Several challenges to successful 

detector implementation were identified as well as post-processing schemes. 

  

6.2.1 Detector and Instrumentation Scheme 

A UO2 crystal, UO2-T-11a, was developed into a potential resistive device by 

application of two mechanical tungsten contacts on opposing facets.  The contacts were 

held under constant force by applying spring-tension within an insulating Lucite block.  

A magnified image of the device is shown in Figure 38. The resistive UO2 device became 

a resistive UO2 detector by the addition of a pulse processing chain as illustrated in 

Figure 39. 
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Figure 38.  A magnified image of the UO2 crystal with mechanical tungsten contacts 
applied. 

 

 In most resistive detection schemes, a shaper would be employed following the 

preamplifier output (e.g. for direct pulse height analysis), but in this experiment only the 

unshaped signal was considered in order to retain all possible information in the tails of 

the preamplifier output.  As the signals were digitally sampled, stored, and post-

processed, this allowed digital shaping of the signals in a post processing program if 

desired.  To this end, an Ortec 142 PC charge sensitive, externally-powered preamplifier 

was used to collect the voltage signal and provided a convenient means to connect an 

ORTEC 478 power supply for detector biasing.  A Tektronix DPO 7104 oscilloscope was 

used to capture and digitize the data.  A low-pass filter was employed for noise 

suppression and a grounded aluminum Faraday enclosure surrounded the device to 

suppress electromagnetic interference. 
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Figure 39. Diagram of the pulse detection instrumentation scheme.  

 

6.2.2 Estimation of Detector Background and Expected Signal Parameters 

 It was assumed, based on the resistive nature of the I(V) data, that the depleted 

region at the metal-semiconductor volume was much smaller than the crystal volume.  

The active volume was modeled as a hemispherical region about each contact with a 

radius of 9 µm, the attenuation length of a 4 MeV α particle as determined by Monte 

Carlo simulation using the software package SRIM [69].  Assuming both regions about 

the contacts contribute, the active volume was estimated to be 3 × 10-9 cm3. 

 The expected background signal of the depleted uranium crystal consists of alpha 

particles and gamma-rays from the decay sequence of 238U.  Assuming secular 

equilibrium, the primary contributions are expected from 238U, 234U, and 230Th as outlined 

in Table 10. 
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Table 10.  The primary 238U decay chain contributions to the crystal background. 

Conversion t1/2 [y] α Energy γ Energy frequency 
238U to 234Th  4.47 x 109  4.2 MeV 0.013 MeV 9% 
234U to 230Th  2.48 x 105  4.7 MeV 0.136 MeV 10% 

230Th to 226Ra  7.54 x 104  4.7 MeV -- -- 
 

The specific activity of 238U, based on both a uranium density of 9.7 g/cm3 in a UO2 

matrix and the half-life from Table 10, is 7.2 × 106 α/min cm3.  Combined with the active 

volume, the minimum background emission rate is (32 α + 3 γ) / day.  Within the time-

frame of experimentation, no contribution from spontaneous fission is expected.  The rate 

of such an event, considering a spontaneous fission rate of 3.93 / min cm3, is once per 161 

years within the small active volume.    

 The RC time-constant of the ORTEC 142PC charge-sensitive pre-amplifier was 

determined experimentally.  The test jack circuit of the amplifier employs a 1 pF 

capacitor to provide charge injection to the amplifier circuit [70].  A linear fit of the 

amplifier response to a series of known amplitude pulses at the test jack provided the 

parasitic capacitance across the pre-amplifier circuit, Cf, which has an equivalent 

resistance of 500 MΩ.  The measured capacitance of 0.28 pF is consistent with the 0.1 to 

2 pF operating range of the amplifier.  The resulting time constant, the product of 0.28 pF 

and 500 MΩ, is 140 µs. 

 The maximum amplitude of a pulse for a given ionization energy, V/E, is related 

to the amount of charge collected within the detector by (74) in which q is the elementary 

charge, Cf is the amplifier capacitance, and Ee is the energy for electron-hole pair creation 

within the detector material [71]. 
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  𝑉𝑉
𝐾𝐾

 =  
𝑞𝑞

𝐶𝐶𝑟𝑟 𝐾𝐾𝑚𝑚
 (74) 

 

The range of Ee for UO2, an unknown parameter, is estimated by assuming a lower limit 

of 2 eV, the estimated band-gap.  An upper limit is estimated at 6 eV by scaling the band 

gap by three; a factor empirically observed in silicon which has a band gap of 1.12 eV 

and an electron-hole pair energy of 3.62 eV [72].  The resulting detector V/E range is 95 

to 286 mV/MeV.  The complete collection of a 4 MeV α-particle from decay is expected 

to produce a pulse maximum ranging from 1.2 to 0.4 V. 

 

6.2.3 Initial Results 

A simple experiment was used to examine both the detector background and 

determine if the detector reacted to an external source.  With an applied crystal bias of 6 

V over a period of 24 hours, the detector response was observed in the form of persistent 

oscilloscope traces shown in Figure 40a using an amplitude trigger.  The oscilloscope 

trigger was set above the noise level. This was followed by another 24 hr period in which 

a single 241Am button source was placed near the detector.  Notable is that during the 

background acquisition (Figure 40a), there were only 7 counts over the 24-hour period.  

The signals that were observed had very long tails, much longer than the preamplifier 

decay time used in the detector.  However, in the 24-hour source exposure experiment, 67 

counts were observed (Figure 40b).  While this rise in counts was accompanied by an 

increased background (once again composed of long tailed pulses), there were also many 

preamplifier pulses of the appropriate/expected shape which can be seen by visual 

comparison of Figure 40a and Figure 40b.   
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Figure 40. Results of the initial a) 24-hour background/internal noise measurement and b) 
24-hour 241Am signal response are pictured.  During the background acquisition, only 7 
counts were obtained, whereas 67 counts were acquired during the source exposure time 
period. 

 

 The average pulse amplitude in each case was nearly identical, 0.47 ± 0.04 V 

without the source and 0.50 ± 0.07 V with the source.  The incident α radiation from the 

241Am source, though initially emitted at 5.47 MeV, was estimated to have a mean energy 

of 4.03 ± 0.05 MeV after scattering through the 5 mm air-gap to the crystal as determined 

by a 10k particle SRIM Monte-Carlo simulation [69].  The energy similarity between the 

incident and expected background signal was encouraging in that it explained why the 

signal amplitudes were similar.  Additionally, 20% of the expected background events 

and under 3% of the background-subtracted 241Am events were observed.  Both 

phenomenon were encouraging given the nature of the detector and estimate of the active 
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region despite the poor sampling statistics.  The differences in the decay time of the 

pulses measured with and without the source also suggested that decay time might be a 

means to differentiate the signals. 

 Several new data sets were obtained to measure this phenomenon.  After several 

days, the background noise level increased in amplitude by as much as a volt along with 

the observed pulse-heights with the same settings.  No changes to the experimental 

apparatus were made.  The rise in the signal was tentatively attributed to AC line noise 

and appeared to be more significant between the times of 1600 and 1900 each day.  

However, the installation of a sophisticated power conditioner to control this variable did 

not eliminate this phenomenon. 

 

6.2.4 Noise Analysis 

 The I(V) measurement taken soon after contact placement indicated that 21 µA of 

leakage current was created by a 6 V bias, the operating condition of the detector.  This 

total leakage current is a combination of bulk and surface currents.  Disregarding 

contributions from the stable, commercially procured components of the detector, 

fluctuations in the leakage current of the crystal are the likely cause of detector noise.  

According to [72], detector noise is attributed as follows: 

i) ‘Shot noise’: fluctuations in bulk generated leakage 

ii) Fluctuations in surface leakage 

iii) ‘Johnson noise’: a contribution from poor electrical contacts or series 

resistance. 
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 Within the mechanical contact system, all three categories are effectively coupled.  

Bulk generated leakage current, the result of either semiconductor-metal junction 

dynamics or thermally generated carriers, can be strongly affected by changes to the 

contacts from vibration or relaxation.  In fact, after establishing the contacts, the 

relaxation of the system was observed as intermittent noise signals for several minutes, 

presumably as the tension on opposing pins reached an equilibrium.  Were UO2 to have 

piezoelectric qualities, this would provide an additional contribution under the pressure of 

the pins.  However, there is no data to suggest this.  Surface leakage can also be affected 

by the contacts which are established at the surface interface. 

Temperature induced shot noise is not expected to significantly contribute to the 

noise signal.  The thermal energy contribution is on the order of 0.025 eV at 70 °F 

(294 K), the nominal temperature of the laboratory.  Fluctuations on this order of 

magnitude are not significant. 

 It is a possibility that fluctuating surface leakage is a significant contributor to 

detector noise as it was observed experimentally that, in at least one experiment, 

increased noise correlated with a period of high relative humidity.  The transient and 

fluctuating nature of the noise suggests a reversible process unlike enhanced surface 

oxidation.  Conductivity data as a function of humidity for a nearly stoichiometric UO2 

single crystal are not available.  However, an analogous quartz system indicates enhanced 

surface conductivity varying by two orders of magnitude in the range of 20% and 90% 

relative humidity [73].  If the UO2 surface behaves in a similar manner, an increased 

surface leakage current would be expected with increased relative humidity. 
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 From a practical stand-point, the noisy signal provided a challenge to data 

collection.  A simple amplitude trigger was no longer sufficient for practical data 

collection. 

 

6.2.5 Pulse Form Analysis 

A typical pulse form with a continuous leakage background is depicted in 

Figure 41.  The decaying tail of the pulse can be mathematically described by (75) where 

V is the pulse-height in volts, t is time, V0 is the maximum pulse height, and τ is the decay 

time constant.  The pulse decays in time at a rate described by the decay time constant.  

The pulse form is provided by the amplifier which provides the nominal time constant but 

variations in the collection of a pulse are reflected in actual value of τ. 

 
𝑉𝑉(𝐷𝐷) =  𝑉𝑉0 𝑒𝑒−𝑠𝑠 𝜏𝜏�  

(75) 

 

 

Figure 41.  A typical pulse-shape attributed to an alpha-particle deposition in the detector.  
The zero-time point in this plot is determined by the trigger setting of the oscilloscope 
which is arbitrary.  



www.manaraa.com

94 

 In order to both identify and compare pulses in a data set focused on the pulse tail, 

the data is reduced to a set of parameters.  From a practical perspective, a direct fitting of 

the data points comprising the tail yields V0 and τ.  However, the pulse form presents a 

variable baseline which creates uncertainty in V0 since the pulse forms are superimposed 

on a continuous leakage-induced background.  Fitting the data in derivative space 

eliminates the pulse-height variation from the baseline and provides a means to fit the 

data using (77) where the zero-time reference coincides with V0.  The derivative fit 

produces the best measurement of V0 while the direct fit, informed by the derivative fit, 

produces the best estimate of τ. 

 

 𝑑𝑑𝑉𝑉
𝑑𝑑𝐷𝐷

=  −
𝑉𝑉0
𝜏𝜏

 𝑒𝑒𝑠𝑠 𝜏𝜏�  
(76) 

 

  
𝑑𝑑𝑉𝑉
𝑑𝑑𝐷𝐷(0)

=  −
𝑉𝑉0
𝜏𝜏

 (77) 

 

6.2.5 Detector Noise & Trigger Scheme 

 During periods of increased noise, potentially the result of uncontrolled 

parameters, the baseline of the signal increased by as much as a volt.  When this 

occurred, data collection with a simple amplitude trigger was affected.  The increased 

baseline noise constantly triggered the oscilloscope.  In order to reduce non-pulse data 

collection, a fall-time trigger employing two amplitude thresholds and a delay time was 

developed.  The trigger required that the signal first drop through an upper threshold and, 

within a specified minimum time, across the lower threshold; consistent with the 

behavior of well-defined pulse decay.  The nominal pre-amplifier time constant was used 
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as the delay time with a minor reduction in order to establish an appropriate minimum 

decay time limit. 

 Despite the trigger scheme, noisy oscilloscope traces were recorded along with 

well-defined pulse forms.  An automated means of pulse-identification and parameter 

measurement was developed to identify data for further analysis.  Figure 42 depicts some 

oscilloscope traces captured by the trigger scheme and illustrates the challenge of 

automating pulse identification from the data.  The algorithm for identification of a pulse 

required the following: 

1) A pulse maximum within a 0.6 ms window about the trigger point of the 2 ms 

scope trace. 

2) A decay tail extending at least one decay constant in time without interruption. 

3) A time constant less than 0.005 s. 

4) A coefficient of determination, R2, of at least 0.90 required of the fitting of the 

pulse tail. 

Data not fitting these criteria, though potentially a pulse superimposed with noise, was 

not analyzed.  The use of a MATLAB code to process the data files enabled the practical 

evaluation of large data sets.  Each recorded oscilloscope trace was collected as a 

2 × 1000 vector of voltage and time values.  Based on the memory limitation of the 

oscilloscope, up to 32,767 triggered-events were recorded for each data set. 
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Figure 42. Oscilloscope traces typical of events captured by the fall-time trigger. The 
upper left trace is considered a pulse.  The upper right is pulse-like but excluded by the 
algorithm due to in insufficiently long tail and poor exponential fit.  The bottom left trace 
is excluded by the absence of a defined pulse peak.  The bottom right trace is excluded 
based on a lack of defined pulse peak and poor exponential tail fitting. 

 

6.2.6 Source Description and Geometry 

The response to several radiation sources was studied as well as the effect of 

differing fluxes.  Up to four 241Am sources were placed approximately 5 mm from the 

crystal both with, and without, a paper shield as shown in the uppermost portion of 
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Figure 43 and the left side of Figure 44.  A closer approach was impractical given the size 

of the sources and the crystal holder. 

 

 

Figure 43. The experimental source and detector geometry. 

 

The use of a paper shield in conjunction with the 241Am provided a convenient source of 

either 60 keV γ-rays or a flux of both the γ-rays and α-particles.  Additional γ-ray 

sources, 55Fe, 60Co, and 137Cs were set at three different distances from the detector 

within the Faraday cage as shown on the lower portion of Figure 43.  A summary of the 

source information is presented as Table 11.  All β emissions were shielded with plastic.  
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Figure 44.  Placement of the 241Am sources (left) and a γ-ray source (right).  

 

Table 11.  Summary of sources. The 241Am source was used with and without shielding 
for α particles.  

Source Activity Emission 
Working 
Distance 

241Am 4 x 36.8 kBq 

α, 5.4 MeV; 4 MeV at 5 mm 

5 mm 
ϒ-ray, 0.060 MeV 

  
α, 5.4 MeV (Shielded) 

ϒ-ray, 0.060 MeV 

60Co 134 kBq 

ϒ-ray, 1.17 MeV 

20, 70, & 143 mm ϒ-ray, 1.33 MeV 
β, 0.31 MeV (Shielded) 
β, 1.48 MeV (Shielded) 

55Fe 1680 kBq 
 

20, 70, & 143 mm ϒ-ray, Mn kα, 0.006 MeV 
Auger, 0.005 MeV (Shielded) 

137Cs 262 kBq 
ϒ-ray, 0.662 MeV 

20, 70, & 143 mm β, 0.512 MeV (Shielded) 
β, 1.174 MeV (Shielded) 

 

6.2.7 Efficiency Analysis  

The collected data is summarized in Table 13 which shows the number of 

triggered events, the number of events identified as pulses, and the average trigger and 



www.manaraa.com

99 

pulse detection rates.    The two background measurements were conducted 7 days apart 

with different trigger thresholds but in accordance with a delay time of 140 µs.  The 

trigger settings for all data acquired using a source were the same.  Though not 

conclusive, this may be the reason why the pulse detection rate for several sources is 

lower than that of the background.  Most of the γ-ray data was acquired at nearly the 

maximum oscilloscope collection rate (italicized in red) of ~3 events per sec, or 10,800 

events per hour.  Even at the lowest flux, most of the events were not pulses as indicated 

by the low acceptance value (ratio of triggered events to code-identified pulses).  

Although the background noise level increased, the presence of the γ sources appeared to 

increase the noise as well. 

One of the expected attributes of a detector is the reduction of the count rate with 

reduced flux.  The detection rate of a given energy at 70 mm should be four times that at 

143 mm, nearly twice the distance.  Although this holds in the case of 60Co in which the 

count rate was not saturated at 143 mm, it is not replicated by the other γ-ray source data.  

In the case of 60Co, a combination of low activity and small cross-section likely 

prevented saturation though the detection rate was higher than expected.  Summarized in 

Table 12, the γ-ray emissions from 55Fe and 241Am are more likely to interact with the 

crystal than those of 137Cs and 60Co.  In fact, the crystal should be nearly transparent to 

60Co. 
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Table 12.  Mono-energetic photon attenuation in the UO2 crystal. 

 
x-ray Energy 

[MeV] 
Attenuation / mm 

UO2 
Fe-55 0.006 100.0% 

Am-241 0.060 99.5% 
Cs-137 0.662 5.1% 

Co-60 1.170 1.4% 
1.330 1.3% 

 

The saturated data is not useable for efficiency computation.  Considering the inability to 

appropriately remove background counts, none of the data is particularly well-suited for 

such a computation. 

The detector volume was based on key assumptions which must be considered for 

a computation of geometric efficiency.  Three estimates of the detector volume within the 

1 mm diameter crystal are presented in Table 13 along with the corresponding detection 

efficiency.  The 0.009 mm (9 µm) radius is based on the attenuation length of a 4 MeV 

α particle.  The value of 0.1 mm is approximately 10 times larger and provides a 

comparative value.  A radius of 0.5 mm represents the entire crystal, the maximum 

possible value.  The estimate of geometric efficiency, based on detection of α-particles, 

neglecting the background contribution, and bounded by the three active detector sizes, is 

between 0.01% and 27%.  When based only on the 0.06 MeV γ-rays from the shielded 

241Am, geometric efficiency is between 0.003% and 9%.  Estimates based on higher 

energy γ-rays appear nonsensical especially given the low probability of interaction. 
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Table 13. Summary of the data collected using different sources and source to detector 
distances.  Numbers in red indicate the data was collected very near the maximum 
collection rate of the oscilloscope and is potentially inaccurate. 

 

 

 

 

Source 

Events 

Code-Identified Pulses 

Avg. Event Rate [/h] 

Avg. Pulse Detection 
Rate [/h] 

Acceptance 

Source Activity [kBq] 

Sensitivity to 
Estimated Detector 

Radius  

none 16435 6065 1048 387 37% -- 0.009 
mm 

0.1 
mm 

0.5 
mm 

none 32181 9269 1229 354 29% -- 
Det. 
Ratio 
[%] 

Det. 
Ratio 
[%] 

Det. 
Ratio 
[%] 

241Am, 5mm 32070 19566 339 207 61% 294 27 0.22 0.01 
241Am/Paper 4605 2540 62 34 55% 147 9 0.07 0.003 

60Co, 143 mm 32757 6825 723 151 21% 134 31706 257 10 
60Co, 70 mm 32767 2063 9443 595 6% 134 30294 24581 10 
60Co, 20 mm 32767 1456 9127 406 4% 134 1974 1598 1 

137Cs, 143 mm 32767 2830 8738 755 9% 262 80982 656 26 
137Cs, 20 mm 32767 1983 8928 540 6% 262 1341 1086 0.43 
55Fe, 143 mm 32767 1886 7380 425 6% 1680 7116 58 2 
55Fe, 70 mm 32767 1553 9052 429 5% 1680 1741 1412 1 
55Fe, 20 mm 32767 999 9498 290 3% 1680 112 91 0.04 
55Fe, 20 mm 32767 1444 8338 367 4% 1680 142 115 0.05 
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6.2.8 Pulse-Shape Parameter Study  

 With detection rate analysis inconclusive, a pulse-shape parameter study was used 

to examine the differences, if any, between the measured pulse-forms. Using the fitting 

data from the pulse identification algorithm, a 100 × 100 bin, three-dimensional 

histogram was created for each data set using the fitted pulse-height and time constant as 

the ordinate and abscissa with the number of binned pulses providing an intensity as 

shown by the ‘heat plot’ format of  Figure 45.   The plots are scaled to show the most 

intense regions of change within the dataset, and initial analysis suggests that the rate of 

pulse decay differs among the radiation types.  Pulses attributed to the 241Am α particles 

decay more rapidly than those of the background.  This phenomenon was tacitly observed 

in the initial 24-hour study.  Pulses attributed to the γ ray emissions from 241Am and 60Co 

(placed at 143 mm) are characterized by intermediate decay constant values.  60Co at 143 

mm was the only non-Am source that measured below the maximum detection rate. 

The pulse amplitudes, however, are higher than expected.  The estimate of V/E 

placed a 4 MeV α particle pulse at just over 1 V which is at odds with the measured 2 V 

pulse cluster for 241Am depicted in Figure 45.  It is, however, gratifying that the pulse 

height of the externally supplied α particle is lower than that of the background as one 

might expect from a detector dead-layer.  The response to the 0.06 MeV γ-rays from 

241Am, even at full energy deposition, are predicted to produce only a 0.02 V pulse and 

yet 2.5 V is measured; a non-physical response.  The histograms for 137Cs, those 

remaining for 60Co, and those of 55Fe show significant scatter and lack of defined 

clustering as shown in Figure 46 and Figure 47.  The pulse-amplitudes are larger than 
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those of the background cluster and are potentially attributed to detector noise given the 

decay constant similarity to 140 µs, the expected data bias from the oscilloscope trigger. 

 

Figure 45.  A pulse height vs. time constant histogram summarizing the post-processed 
detector background, response to 241Am, 241Am with paper filter, and 60Co at 143 mm.  
The red pixels are of the highest intensity for each histogram with a value indicated by 
the color bar. 
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Figure 46. A pulse height vs. time constant histogram summarizing the post-processed 
detector background, response to 137Cs at two different distances as well as 60Co.  The red 
pixels are of the highest intensity for each histogram with a value indicated by the color 
bar. 
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Figure 47. A pulse height vs. time constant histogram summarizing the post-processed 
detector background, response to 55Fe at three different distances.  The red pixels are of 
the highest intensity for each histogram with a value indicated by the color bar. 

 

The heat-map clusters can be misleading.  They do portray regions of high 

relative intensity but they do not necessarily show a significant count population.  For 

example, the strong 241Am cluster contains roughly 545 of the 9269 measured pulses, or 

approximately 6% of the dataset.  An expansion of the histograms to encompass regions 

containing 63%, a convenient value, of the measured pulse set produced much larger 

parameter spaces which show significant overlap between the different radiation 

responses as depicted in Figure 48. 
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Figure 48.  Results of the parameter study using 63% of the identified pulses.  The 
scheme cannot separate the radiation types at this level. 

 

6.3 Implications 

 The ability of the crystal to detect radiation, at least in the configuration of this 

experiment, is inconclusive.  The unstable detector signal is the primary detractor of the 

study and the most likely reason that the count-rate experiment was inconclusive.  The 

parameter study, at least for α particles, does show promise given the strong parameter 

clustering and faster pulse decay specifically attributed to the 241Am α particles.  The 

expanded parameter space results summarized in Figure 48 can be explained in two 

ways; either the algorithm identified non-pulse noise in addition to real pulses, or the data 

is tantalizing, irrelevant, and the detector does not work.  Both can be argued, but, it is 

possible that the detector was in fact responding to α radiation.  Based on a similar origin, 
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it is certainly possible that the background signal and the external 241Am response would 

be similar.  The γ-ray data cannot be easily reconciled, but the increased noise levels in 

the presence of a γ-ray flux do not bode well for this material as a neutron detector. 

The detector appeared to degrade over time with an increased noise contribution 

in the days following contact placement.  Subsequent detector studies would benefit from 

surface sensitivity experiments focused on surface conductivity as well as time-dependent 

I(V) and C(V) measurements to assess detector stability. 
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VII.  Conclusion 

7.1 Summary of Findings 

 The systematic study of hydrothermally grown uranium dioxide crystals was 

undertaken to specifically address the following questions: 

(1) Does the hydrothermal growth process produce high-quality, high-purity, 

stoichiometric, single-crystal, uranium dioxide?  

(2) What are the electronic characteristics of the crystal and crystal surface?  

(3) Do the crystals have the potential for radiation detection? 

To a great extent, all questions have been answered and the outlook is promising for the 

use of this material in solid state radiation detectors.  

 

7.1.1 Crystal Quality 

Hydrothermally grown UO2 crystals have been confirmed to be single-crystal, 

nearly stoichiometric in the fluorite structure, and high purity.  XRD measurements show 

long-range order and a nominal lattice parameter of 5.4703 ± 0.0006 Å which is in 

excellent agreement with measurements on UO2.000 ± 0.001 by [32] yielding 5.47127 ± 

0.00008 Å at 20 °C.  This provides a nominal stoichiometry for hydrothermally 

synthesized crystals of UO2.003.  XRF and XPS measurements of the most recent samples 

show relatively high purity, > 96% UO2, containing few (10 or less) impurity species.  

The growth process has been refined to remove low-Z contaminant species but high-Z 

impurities (Z > 55) remain of concern as the solubility of such species appears similar to 

that of UO2.  It remains to be seen if these impurities extend to the crystal bulk.  Depth 
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resolved XPS measurements indicate that the stoichiometry of the UO2 surface remains 

nearly constant between the surface and sub-surface with little indication of 

hyperstoichiometry.  In addition, temperature dependent XPS measurements indicate that 

the nearly-stoichiometric crystal surface consists of a mixed phase of (UO2+x + U4O9-y) 

which likely becomes a single (UO2+x) phase at a transition temperature between 475 and 

495 K.   Impurity mobility appears to increase sharply with the onset of the single phase 

which may be leveraged for crystal purification, or may identify an operating limitation 

for doped crystals. 

 

7.1.2 Electronic Characteristics 

The XPS spectral features of both the U and O core lines are consistent with UO2 

which is corroborated by the Auger parameter analysis.  Both the (100) and (111) 

surfaces are electronically stable with work functions deviating less than 5% between 

measurements of the freshly sputtered and reconstructed surfaces under vacuum 

conditions.  The photoelectric work functions of the UO2 (100) and UO2 (111) surfaces 

were measured to be 5.80 eV and 6.28 eV respectively with an uncertainty of ± 0.36 eV.  

An experimental I(V) measurement of a fabricated Ag/UO2/GaIn device identified the 

semiconductor as n-type and indicated good agreement with the expected Ohmic nature 

of the contact.  C(V) measurement analysis provided an estimate of the Schottky barrier 

height larger than expected from theory.  
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7.1.3 Potential for Radiation Detection 

A simple resistive UO2 detector was fabricated by application of mechanical 

tungsten contacts.  Despite multiple efforts to parse the measured response, the device did 

not conclusively demonstrate the ability to detect or discriminate between α and γ 

radiation.  However, the data did show encouraging pulse-shape discrimination results as 

well as the background signal expected of a depleted UO2 device.  A number of 

engineering challenges were identified to successful detector implementation to include 

detector noise reduction from uncontrolled parameters.  The potential for radiation 

detection using hydrothermally synthesized UO2 remains to be answered. 

7.2 Future Work 

Much of the analysis of the hydrothermally grown crystals to date has been 

surface-oriented.  Although XRF measurements have provided an overall composition 

analysis, both the extent of the hyperstoichiometric surface layer, the location of the 

cesium impurity and the core composition of the crystal have yet to be fully explored.  To 

this end, a depth-resolved elemental composition measurement, such as time-of-flight 

secondary ion mass spectroscopy (TOF-SIMS), would provide a more complete picture 

of the crystal below the surface. 

The experimental investigation of electrical contact metal-semiconductor 

junctions is a rich topic for future work.  This research would also benefit from 

measurements by atomic force microscopy to determine the relative bonding strength of 

each metal to the crystal surfaces in the pursuit of a robust device.  In addition, the 



www.manaraa.com

111 

majority charge carrier of the crystals has not been identified.  Hall effect measurements 

may clarify the nature of the majority charge carrier. 

The pulse detection experiment identified several avenues of continued research.  

The most notable challenge was noise reduction which may be improved with better 

device construction techniques.  The electrical behavior of the crystal surface to 

atmospheric influence is also an area of interest.  And finally, the development of new 

strategies and algorithms for signal processing may benefit experimental work but real-

time techniques are needed to implement an effective detector in the future. 
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